
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

CENTRO TECNOLÓGICO

COLEGIADO DO CURSO DE CIÊNCIA DA COMPUTAÇÃO

Matheus Lenke Coutinho

Tonto: A Textual Language for Ontology-Driven
Conceptual Modeling

Vitória, ES

2023

Matheus Lenke Coutinho

Tonto: A Textual Language for Ontology-Driven
Conceptual Modeling

Monografia apresentada ao Curso de Ciência da
Computação do Centro Tecnológico da Univer-
sidade Federal do Espírito Santo, como requisito
parcial para obtenção do Grau de Bacharel em
Ciência da Computação.

Universidade Federal do Espírito Santo – UFES

Centro Tecnológico

Colegiado do Curso de Ciência da Computação

Supervisor: Prof. Dr. João Paulo Andrade Almeida

Vitória, ES
2023

Matheus Lenke Coutinho
Tonto: A Textual Language for Ontology-Driven Conceptual Modeling/ Matheus

Lenke Coutinho. – Vitória, ES, 2023-
86 p. : il. (algumas color.) ; 30 cm.

Supervisor: Prof. Dr. João Paulo Andrade Almeida

Monografia (PG) – Universidade Federal do Espírito Santo – UFES
Centro Tecnológico
Colegiado do Curso de Ciência da Computação, 2023.
1. Conceptual modeling. 2. OntoUML. 3. DSL. 4. Textual Syntax. 5. Langium IV.

Tonto: A Textual Language for Ontology-Driven Conceptual Modeling

CDU 02:141:005.7

Matheus Lenke Coutinho

Tonto: A Textual Language for Ontology-Driven
Conceptual Modeling

Monografia apresentada ao Curso de Ciência da
Computação do Centro Tecnológico da Univer-
sidade Federal do Espírito Santo, como requisito
parcial para obtenção do Grau de Bacharel em
Ciência da Computação.

Trabalho aprovado. Vitória, ES, 19 de julho de 2023:

Prof. Dr. João Paulo Andrade Almeida
Orientador – Departamento de Informática,

UFES

Profa. Dra. Renata S. S. Guizzardi
Membro da Banca – Departamento de

Informática, UFES

Profa. Dra. Monalessa Perini Barcellos
Membro da Banca – Departamento de

Informática, UFES

Vitória, ES
2023

Dedico este trabalho em memória de meus avós, Laura, Solange e Antônio, que me viram chegar
até a universidade mas precisaram ver minha conclusão de um lugar melhor.

Acknowledgements

Diversos momentos da vida somos obrigados a passar por fases que aprofundam o que
sabemos sobre nós mesmos. Nada seria sem as pessoas à minha volta, e agradeço a todos que
fizeram parte da minha jornada.

Agradeço primeiramente à minha família, à quem devo quem sou hoje e onde estou,
sendo meu primeiro refúgio. Sem eles, eu não estaria aqui hoje. Agradeço principalmente à
minha mãe, por estar ao meu lado em todos os momentos, bons e ruins, e mesmo sem entender
todos os meus sonhos, nunca deixou de me apoiar e me aceitar por quem sou. Agradeço também
a meus irmãos e minhas cunhadas, que me presentearam com ótimas memórias nos últimos
anos. Agradeço também ao meu pai por ter lutado muito pra me dar a estrutura necessária para
chegar aonde estou hoje. Aos meus padrinhos, Jorginho e Wilma. Agradeço especialmente às
minhas primas: Priscilla, que considero irmã, e Anne, que despertou meu interesse pela ciência.

Agradeço também ao meu parceiro de vida, e hoje meu marido, Luis, que esteve ao
meu lado nos últimos anos me dando todo o apoio necessário. Muito obrigado por todo o
companheirismo e por ser meu conforto, sem você eu não estaria aqui, e te amo muito. Amo
muito também Luna e Nix, minhas companheiras de 4 patas.

Agradeço imensamente aos amigos que fiz, principalmente USJ, Angela, Marcelly, Bibs,
Mari, Cat, David, Sarcinelli, Cipri, Lorenzo, Marcela, Pedro, Igor, Rogério, Raphael, e ao meu
companheiro de troca de curso Ryan. Não consigo imaginar ter passado pela universidade sem
vocês, e agradeço a cada dia por ter amigos maravilhosos. Aos meus amigos de longa data:
Letícia, Marcio, Victoria, Paulo, Caio, Maria e Artur. Obrigado por estarem ao meu lado por
todo esse tempo.

Agradeço ao meu orientador, Prof. Dr. João Paulo Andrade Almeida, por toda a paciência
e dedicação ao longo destes dois anos, durante a iniciação científica e este projeto de graduação.
Agradeço também aos membros da banca, Profa. Dra. Renata Guizzardi e Profa. Dra. Monalessa
Barcellos, por participarem deste trabalho. Agradeço também aos professores que me moldaram
como o cientista da computação que irei me tornar, e me guiaram durante todo o percurso: GC,
Vítor, Patrícia, Zambon, Rô, Varejão, Jordana e Roberta.

Por fim, agradeço à instituição Universidade Federal do Espírito Santo por todas as
experiências proporcionadas. Dos responsáveis por garantir a estrutura da universidade, aos
amigos da CT Junior e da Semana da Engenharia. É imensurável o crescimento profissional e
pessoal que obtive neste lugar.

“You got your passion, you got your pride
But don’t you know that only fools are satisfied?
Dream on, but don’t imagine they’ll all come true

When will you realize, Vienna waits for you?
(Billy Joel)

Resumo

Com o objetivo de criar modelos conceituais baseados em ontologias, diversas técnicas de
modelagem foram desenvolvidas ao longo dos últimos anos. Uma dessas técnicas foi a OntoUML,
criada com base nos diagramas de classe da UML e na ontologia de fundamentação UFO (Unified
Foundational Ontology). Após sua proposição, diversos aprimoramentos e casos de uso foram
publicados ao longo das últimas duas décadas. Isso resultou em melhorias nos elementos da
linguagem, ferramentas ou plugins de edição, validação de modelos e de transformação para
outras linguagens (como OWL).

Apesar dos vários avanços, por a OntoUML ser primariamente uma linguagem diagramáti-
ca/visual, diversos desafios persistem associados a esse tipo de representação. Estes desafios
incluem, por exemplo, o esforço investido em tarefas de diagramação e layout, a dificuldade
de manutenção de modelos com grande número de elementos, e a inabilidade de aplicação de
ferramentas baseadas em texto para manipulação destes modelos. Essas ferramentas poderiam
facilitar não apenas a edição de modelos, mas também outras tarefas como o controle de versão
e a comparação de versões de um mesmo artefato.

Assim, surge a linguagem Tonto, a partir da junção das palavras “Textual” e “Ontology”. Tonto
é uma linguagem textual desenvolvida com o objetivo de permitir a criação de ontologias
de forma independente de ferramentas diagramáticas e visuais. Por meio da utilização da
ferramenta Langium, desenvolveu-se uma gramática para Tonto e uma extensão para esta
linguagem no editor VS Code, amplamente utilizado pela comunidade atualmente.

Por meio da Tonto, é possível desenvolver ontologias com uma linguagem textual que possui
construtos correspondentes àqueles da OntoUML, além de ser possível realizar em tempo real
validações semânticas que garantem a qualidade do modelo. Além disso, é possível serializar os
modelos produzidos usando o JSON schema da OntoUML, e assim utilizar serviços do projeto
ontouml-server, como a transformação de ontologias em OWL baseadas em gUFO. A extensão
projetada permite a validação de modelos com a API ontouml-server, e a importação de modelos
em formato JSON para Tonto.

Por fim, com o objetivo de garantir a modularização de projetos Tonto, contribuindo com a
reutilização e organização de especificações, foi desenvolvido o TPM (Tonto Package Manager).
O projeto de TPM foi inspirado em gerenciadores de pacote de linguagens de programação
amplamente populares, como NPM (Node Package Manager) e SPM (Swift Package Manager).

Palavras-chaves: Modelagem Conceitual, OntoUML, Langium, Sintaxe Textual, Ontologias

Abstract

With the objective of creating Ontology-Driven Conceptual Models, several modeling tech-
niques have been developed over the past years. One of these is the OntoUML language, which
was created by specializing UML class diagrams with concepts of the Unified Foundational
Ontology (UFO). Since its proposal, numerous enhancements and use cases have been published
over the last two decades, improving language elements, and enabling model development
with tools and plugins, including functionality for model validation and transformation into
other languages such as OWL.

In spite of the numerous advancements, several challenges still persist due to visual/diagram-
matic nature of the language. These challenges include, for example, the effort invested in
layout diagramming tasks, the difficulty of maintaining models with a large number of elements,
and the inability to apply text-based tools for manipulating these models. These tools could
facilitate various tasks, such as version control and comparison of different versions of the
same artifact. Considering the potential of text-based tools, there are numerous opportunities
to explore them for conceptual modeling based on ontologies.

Thus, Tonto emerges from the combination of the words “Textual” and “Ontology”. Tonto is a
textual language developed with the objective of allowing the creation of UFO-based conceptual
models completely independently of diagrammatic and visual tools. By using the Langium tool,
a grammar was developed for Tonto, along with a VS Code extension, leveraging thus one of
the most popular text-based development IDEs.

By employing Tonto, it is possible to develop ontologies with text-based constructs that corre-
spond to OntoUML constructs. The developed extension provides real-time semantic validations
concerning the quality of the model. Additionally, it allows for transformations to the JSON
format based on the JSON schema of OntoUML and to OWL implementations based on gUFO.
It also enables model validation with the ontouml-server API and the importing of models
serialized in the JSON format into Tonto. All functionalities are available in the extension, and
they have also been provided in a Command-Line Interface (CLI).

Finally, with the objective of ensuring the modularization of Tonto projects, contributing to
ontology reuse and organization, the Tonto Package Manager (TPM) was developed. The design
of TPM was inspired in popular software development package managers such as NPM (Node
Package Manager) and SPM (Swift Package Manager).

Keywords: Conceptual Modeling, OntoUML, Langium, Textual Syntax, Ontology

List of Figures

Figure 1 – Diagram describing UFO taxonomy. Source: Guizzardi et al. (2022) 21
Figure 2 – OntoUML model example representing a University with departments and

classrooms, professors and students. 25
Figure 3 – Diagram describing a soccer match with roles of a Person. Source: Almeida,

Falbo e Guizzardi (2019) . 26
Figure 4 – Diagram describing a Ship Type with. Source: Fonseca et al. (2022) 27
Figure 5 – Example model representing a person’s life stages and a possible role as a

student, built in the OntoUML plugin of Visual Paradigm tool. 34
Figure 6 – Example model representing a University with departments and classrooms. 39
Figure 7 – VS Code running the Tonto extension with the PersonPhases package code 44
Figure 8 – VS Code running the Tonto extension showing the problems of the model

in the problems tab and at the current line with error 45
Figure 9 – Tonto VSCode extension showing an auto-complete example. 45
Figure 10 – Tonto VSCode extension showing snippets list. 46
Figure 11 – Tonto VSCode extension showing the usage of an internal relation snippet. 46
Figure 12 – Tonto VSCode extension showing an error of the Ultimate sortal validator. 47
Figure 13 – Tonto VSCode extension showing an error of the Sortal specializes Ultimate

sortal validator. 48
Figure 14 – Tonto VSCode extension showing an error of the sortal should specialize

ultimate sortal validator. 48
Figure 15 – Tonto VSCode extension showing an error of Rigid element specializing

Anti-rigid validator. 49
Figure 16 – Tonto VSCode extension showing an error of the Compatible natures of

sortals validator. 50
Figure 17 – Tonto VSCode extension showing an error of the Compatible Natures validator 50
Figure 18 – Tonto VSCode extension showing a warning of the Redundant Natures

validator . 51
Figure 19 – Tonto VSCode extension showing TPM message that dependencies were

installed successfully. 54
Figure 20 – Flowchart diagram showing the process of importing, exporting and vali-

dating a Tonto model. 56
Figure 21 – VSCode showing the differences in Tonto file after adding the role Assistant-

Professor. 58
Figure 22 – VSCode showing the differences in a JSON file after adding the role Assis-

tantProfessor to the Tonto file and using the transformation command. . . . 60

Figure 23 – VSCode showing that changes in a Visual Paradigm model and diagram
cannot be versioned by git. 61

Figure 24 – VSCode showing changes in a JSON file generated by a modified diagram
in Visual Paradigm. 62

Figure 25 – Library model created using OntoUML . 85
Figure 26 – Library model diagram imported from a JSON file generated from Tonto . . 86

List of abbreviations and acronyms

UML Unified Modeling Language

TPM Tonto Package Manager

VSCode Visual Studio Code

DSL Domain-Specific Language

W3C World Wide Web Consortium

CLI Command Line Interface

API Application Programming Interface

AST Abstract Syntax Tree

Contents

1 INTRODUCTION . 14
1.1 Context and Motivation . 15
1.2 Objectives . 16
1.3 Approach . 16
1.4 Structure . 17

2 THEORETICAL REFERENCE AND TECHNOLOGIES USED 19
2.1 Ontology-Based Conceptual Modeling and ontologies 19
2.2 UFO . 20
2.3 OntoUML . 21
2.3.1 Sortals . 22

2.3.2 Non-Sortals . 24

2.3.3 Ontological Natures . 25

2.3.4 Beyond Endurant Types . 26

2.3.5 High order types as Endurants . 27

2.3.6 OntoUML as a Service . 28

2.4 Technologies Used . 28
2.4.1 Langium . 28

2.4.2 Visual Studio Code . 29

2.4.3 Visual Studio Code Extensions API . 29

2.4.4 Development and Execution Technologies 29

2.5 Related Work . 30

3 TONTO: A TEXTUAL SYNTAX FOR MODELING 32
3.1 Requirements . 32
3.2 Tonto Grammar . 33
3.2.1 Class and Datatype Declarations . 33

3.2.2 Generalization Set . 36

3.2.3 Ontological Natures . 37

3.2.4 Relations . 38

3.3 Tonto Visual Studio Code Extension . 42
3.4 Tonto Validators . 46
3.4.1 Ultimate Sortal specialization validator . 47

3.4.2 Sortal specializes more than one ultimate sortal validator 47

3.4.3 Sortal should specialize ultimate sortal validator 48

3.4.4 Rigid specializes Anti-rigid validator . 49

3.4.5 Compatible Natures of sortals validator . 49

3.4.6 Compatible Natures validator . 50

3.4.7 Redundant Natures . 51

3.4.8 Other validators . 51

3.4.9 Tonto CLI . 52

3.5 Tonto Package Manager . 52
3.5.1 Manifest File . 53

3.6 How to use Tonto . 54

4 AN EXAMPLE OF TONTO MODEL: LIBRARY 55
4.1 Importing Model to Tonto . 55
4.2 Validating the Tonto Model . 56
4.3 Exporting the Model . 57
4.4 Analyzing Version Control . 58

5 CONCLUSION . 63
5.1 Final Considerations . 63
5.2 Lessons Learned . 64
5.3 Future Work . 65

BIBLIOGRAPHY . 67

APPENDIX 69

APPENDIX A – TONTO GRAMMAR 70

APPENDIX B – UNIVERSITY MODEL IN TONTO 77

APPENDIX C – LIBRARY MODEL IN TONTO 79

APPENDIX D – LIBRARY MODEL DIAGRAMS 84

14

1 Introduction

Conceptual modeling is a key task in information system design. A conceptual model
describes selected aspects of the physical and social world in such a way as to support the
creation of computational representations of these selected aspects. Since the conceptual model
is often used as a starting point for building a system, the quality of the conceptual model is
crucial in the development process. In recent decades, there has been a growing interest in
using foundational ontologies in conceptual modeling, with the creation of ontology-driven
modeling languages that incorporate the underlying conceptual distinctions of these founda-
tional ontologies. Based on this view, the Unified Foundational Ontology (UFO) (GUIZZARDI,
2005; GUIZZARDI et al., 2022) was developed by combining various theories from linguistics
and formal philosophical ontology.

UFO was used as the basis for defining the OntoUML modeling language (GUIZZARDI
et al., 2018; GUIZZARDI, 2005). This language was originally developed as an extension of UML
class diagrams (OMG, 2017), introducing various stereotypes that correspond to the concepts
defined in UFO. Over the years, sophisticated tooling has been developed for OntoUML at
the Conceptual Modeling & Ontologies Research Group (NEMO) of the Federal University of
Espírito Santo (UFES) and other research groups in the Free University of Bolzano (Italy) and the
University of Twente (the Netherlands), including functionalities for: (i) editing and syntactic
verification of models (MOREIRA et al., 2016; FONSECA et al., 2021), (ii) model simulation
(BRAGA et al., 2010; BENEVIDES et al., 2010), (iii) automatic generation of database schemas
(GUIDONI; ALMEIDA; GUIZZARDI, 2020), (iv) detection of anti-patterns (SALES; GUIZZARDI,
2015), among others.

Despite many advances, the OntoUML language is still an extension of UML and primar-
ily a diagrammatic and visual language. This provides significant benefits for communication
among modelers, as well as problem-solving. Even with the advantages of a visual language,
important challenges are associated with this type of representation. These challenges include
the effort invested in diagram layout tasks, the difficulty of dealing with large models, and the
inability to apply text-based tools to manipulate the models. Such tools could facilitate various
tasks, such as version control, comparison between versions of the same artifact, merging
different versions, and more. However, they are currently not applicable in their current form
to diagrammatic languages. Considering the potential of text-based tools, there is a universe of
opportunities to explore these tools for ontology-based conceptual modeling.

Chapter 1. Introduction 15

1.1 Context and Motivation

Artificial Intelligence, Semantic Web, Software Engineering, and Information Architec-
ture are just a few of the domains that have greatly benefited from the indispensable tool of
conceptual modeling in Computer Science for several years. This technique allows for repre-
senting knowledge about the world in a structured and organized way. Thus, the existence of
theoretical foundations and tools for the development of these models is essential, ensuring
consistency, ease of use, and support for a number of tasks (such as model analysis, verification,
validation, etc.) An example of such theoretical foundations is the Unified Foundational Ontol-
ogy (UFO), which is leveraged in practical settings with the OntoUML language, for which,
since its inception, a series of tools have being built.

Visual languages such as OntoUML have a number of benefits, and allow diagrams to
be used for visualization of the relations between elements and for efficient communication.
However, since the model is strongly linked to its visual representation in the form of a diagram,
there are various moments when attention to the layout of diagrams are necessary, e.g., to
manually arrange elements and relations, to produce selected views. Layout efforts often need
to be revisited when there are changes to the model. There is also the difficulty of dealing
with large-scale models, especially when we have a large number of elements, attributes, and
relationships. For example, a single element can have so many relationships that it may become
difficult to layout the diagram in a manner conducive to the correct interpretation of the
diagram.

In addition, there is the impossibility of applying text-based tools to manipulate the
models. These tools can facilitate a series of tasks such as version control, comparison between
versions of the same artifact, merging different versions, etc. However, they are not easily
applicable to diagrammatic languages. The lack of appropriate versioning often hinders the
collaboration of multiple developers working simultaneously on a project, generating conflicts
when trying to merge the changes made by both parties. Considering the potential of text-based
tools, there is a universe of opportunities to explore these tools for conceptual modeling based
on ontologies. Therefore, there is great relevance in building a robust textual syntax that is easy
to use and has a wide range of functionalities that bring advantages to the models developed
in OntoUML.

Finally, one important tool in modern programming language is a way to facilitate code
reuse and distribution with package managers. However, the existing modeling tools currently
lack support for such a mechanism, resulting in the need for different projects to repeatedly
redefine the same concepts and elements, leading to increased complexity.

From the point of view of a final graduation project in Computer Science, this work
allows integration of theory and practice of concepts and techniques acquired during the
bachelor course, favoring the consolidation of content of the disciplines involved in the training

Chapter 1. Introduction 16

cycle, such as software engineering, programming languages and compilers, among others.

1.2 Objectives

The general objective of this project is to create a textual conceptual modeling language
for UFO-based models with constructs corresponding to those of OntoUML. The language
should be supported by a rich language editor in the form of a Visual Studio Code Extension.
The extension should enhance the development experience and should provide compatibility
with existing elements in OntoUML. It should further permit the modularization of conceptual
modeling projects into different code repositories.

The following specific objectives were defined:

• Objective 1: Propose a textual syntax and create the corresponding grammar for the
language.

• Objective 2: Create a Visual Studio Code extension for the language, which should support
features typical of modern source code editors, including syntax verification, syntax
highlight, auto complete, etc.

• Objective 3: Create a package manager to support the modularization of conceptual
modeling projects, including the management of dependencies to other reusable models.

1.3 Approach

In this section, we will present the methodology applied in this work. To carry out
the objectives of this work, it was initially necessary to study the theories involved in the
project, including reading various articles, dissertations, and the doctoral thesis “Ontological
Foundations for Structural Conceptual Models” (GUIZZARDI, 2005), which was fundamen-
tal for understanding the problem domain. Other resources were studied, especially those
that extended the theory and capabilities of OntoUML, for example, the latest taxonomy of
UFO (GUIZZARDI et al., 2022). Other materials, for example, online content, specifications,
documentation, and videos were also studied. Then, topics such as conceptual modeling, the
Semantic Web, and the fundamental theory of ontologies, which forms the basis for OntoUML,
were reviewed in the literature.

With a structured theoretical foundation, an in-depth study of the tool used for creating
the Tonto language and extension was conducted. The Langium library1 was studied to create
basic DSL (Domain-Specific Language) examples, aiming to gain familiarity with it. One of
the examples created was a simplified version of UML itself, serving as a pilot to initiate the
1 <https://langium.org/>

https://langium.org/

Chapter 1. Introduction 17

formulation of a textual representation for classes, packages, and other artifacts also used in
OntoUML. This experience was essential for planning the textual syntax of Tonto, considering
the various artifacts present in the tool. To complement the understanding of the tool, a study
was conducted on the API for creating extensions for the Visual Studio Code code editor, as well
as its Language Server Protocol API, which supports programming languages and development
tools used in the process.

As a source of inspiration, other textual languages that are part of the modeling and
Semantic Web ecosystems were studied, such as RDF Schema, Turtle (W3C, 2014), OWL (W3C,
2012), Alloy (JACKSON, 2016), ML2 (FONSECA, 2017), among others.

With all this gathered information, an initial version of the Tonto grammar was planned,
and a series of meetings between the student, supervisor, and other researchers helped refine the
initial ideas obtained. Several concepts from current programming languages were replicated,
aiming to create familiarity for developers with the syntax. The language was named “Tonto”,
and the development of the extension began. Throughout the process, the recently launched
Langium tool received important updates, adding new functionalities and keeping up with
releases. After creating the basic syntax, validators were developed to analyze the model created
by the user in more depth, particularly in terms of the semantics of OntoUML rules.

Based on existing models, the strategy involved conducting different iterations of
development, ensuring that new language elements were added and tested. Finally, in addition
to the grammar elements, functionalities were developed in the Visual Studio Code extension
to enable the serialization of OntoUML models into JSON files, following the OntoUML Schema
(FONSECA et al., 2021). Furthermore, by utilizing the OntoUML server API (FONSECA et al.,
2021), the possibility of validating and transforming the model into gUFO models (ALMEIDA
et al., 2019) was added. Finally, a package manager was created to enable the capability of a
Tonto project to have a dependency on other projects, reusing code without needing to copy it
manually from another project.

Throughout the project development, unit tests were implemented to ensure the func-
tionality of already implemented features. Finally, the strategy of publishing the CLI on the
NPM marketplace2 and the extension on the VS Code marketplace was adopted for validation
purposes.

1.4 Structure

In addition to this introduction, this work consists of four other chapters.

• Chapter 2 presents aspects related to the theoretical content relevant to the work;
2 <https://www.npmjs.com/>

https://www.npmjs.com/

Chapter 1. Introduction 18

• Chapter 3 presents the main contribution of this work, explaining the various elements
of the language Tonto;

• Chapter 4 presents an example of a model using Tonto and compares it to the diagram-
matic (OntoUML-based) version of it;

• Chapter 5 presents the concluding remarks of this work.

19

2 Theoretical Reference and Technologies

Used

The following sections present the theoretical foundation that supported the develop-
ment of this project. First, we introduce Ontology-Based Conceptual Modeling and its role
in Computer Science and Information Systems. Subsequently, we provide details about the
OntoUML language and its specifications. Finally, we present related works covering examples
of textual languages for conceptual modeling or software engineering.

2.1 Ontology-Based Conceptual Modeling and ontologies

Ontology is a branch of philosophy that studies concepts such as existence, its nature,
and its relationships. The Cambridge Dictionary defines the term “Ontology” as “the part of
philosophy that studies what it means to exist” (CAMBRIDGE, 2023). As addressed by Guizzardi
(2005), we can define that ontology is broader than other scientific disciplines:

As opposed to the several specific scientific disciplines (e.g., physics, chemistry,
biology), which deal only with entities that fall within their respective do-
main, ontology deals with transcategorical relations, including those relations
holding between entities belonging to distinct domains of science, and also by
entities recognized by common sense. Ontology aims to develop theories about,
for example, persistence and change, identity, classification and instantiation,
causality, among others.

That means that when we are trying to define what exists, we need to make relations
between elements that normally would be ignored in a specific context.

In Computer Science and Information Systems many areas have interest in ontologies.
For example, “the need to create principled representations of domain knowledge in the
knowledge sharing and reuse community in AI” (GUIZZARDI, 2005), or in data and information
modeling and processing. Also, we have in the software engineering field the importance of
domain engineering, motivated by the need of reducing costs in software maintenance and the
need to reinforce software reuse in a higher level of abstraction than merely programming
code. For a database to be more valuable in its domain-specific applications, it is crucial to
have a precise conceptualization of the entities that domain experts perceive as significant.
The problem was that this field also lacked concrete and consistent formal bases for making
modeling decisions (GUIZZARDI, 2005).

In addition to that, we have the application of ontology in the Semantic Web, as a
formal artifact. The idea of the Semantic Web is to make the next step on the Web being

Chapter 2. Theoretical Reference and Technologies Used 20

more than machine-readable, but machine-understandable. That means that computers should
be able not only to hold information in a structured way, but they should also be able to
manipulate the information more deeply. This is done by annotating with meta-data written
in a formal knowledge representation language, and can take advantage of advancements in
the knowledge representation community. Here, ontologies are key artifacts for integrating
human comprehension of symbols with the machine’s ability to process them effectively.

Based on this, the W3C defined on top of the XML layer of a document the Resource
Description Framework (RDF) which is a foundational representation framework in the Semantic
Web stack. This stack includes the Web Ontology Language (OWL) (W3C, 2012) which was
designed to represent rich and complex knowledge about things, groups of things, and relations
between things (W3C, 2012). It provides a formal and expressive framework for defining classes,
properties, individuals, and relationships between them. Also, OWL allows the specification of
logical constraints and inference rules, enabling automated reasoning and semantic processing
of knowledge.

OWL (and any RDF content) can be serialized using the Terse RDF Triple Language
(Turtle) (W3C, 2014) textual syntax for RDF. It allows an RDF graph to be completely written in
a compact and natural text form, with abbreviations for common usage patterns and datatypes
(W3C, 2014). It is a human-readable and compact representation of RDF triples, where triples
are written in a subject-predicate-object format.

2.2 UFO

While we can have examples of ontologies in a specific domain, an ontology can also
be a foundational one, defining aspects that are independent of a domain. Guizzardi (2005)
proposes in his work a foundational ontology called UFO (Unified Foundational Ontology)
through the composition of several theories from areas such as linguistics and formalizations of
ontologies of philosophy. This ontology is divided into three parts: UFO-A, UFO-B, and UFO-C.

For the scope of this work, we will talk mostly about UFO-A, which is an ontology of
endurants, and UFO-B, which is an ontology of perdurants. “Endurants are individuals that exist
in time with all their parts. They have essential and accidental properties and, hence, they can
qualitatively change while maintaining their numerical identify (i.e., while remaining the same
individual)” (GUIZZARDI et al., 2022). Billie Eilish, the Moon, and John’s weight are all examples
of endurants. On the other hand, we have elements that are Perdurants in contrast to Endurants
(GUIZZARDI et al., 2013). “Perdurants are individuals that unfold in time accumulating temporal
parts. An endurant can change while maintaining its identity, a perdurant cannot” (GUIZZARDI
et al., 2022). An example of perdurant is the event of composing a new song, made by an artist.
Figure 1 shows the taxonomy of UFO as presented in (GUIZZARDI et al., 2022).

Chapter 2. Theoretical Reference and Technologies Used 21

Figure 1 – Diagram describing UFO taxonomy. Source: Guizzardi et al. (2022)

2.3 OntoUML

Based on UFO, a class diagram profile was created for UML, introducing various stereo-
types for classes that correspond to the concepts defined in UFO. Over time, it was dubbed
‘OntoUML’. Its focus is on domain models, which consequently places more emphasis on
endurants (objects, present in UFO-A) than perdurants (events, processes, present in UFO-B),
as the foundation of the ontology. We can understand more about each category on the work
proposed by Guizzardi (2005) and further improvements of the theory (ALMEIDA; FALBO;
GUIZZARDI, 2019; GUIZZARDI et al., 2013; GUIZZARDI et al., 2018). Because OntoUML is
a work that had many contributions in the past almost two decades, some elements changed
from the first specification until this present taxonomy.

In OntoUML, selected classes in UFO and the relations between them are represented
by stereotypes of classes or associations in UML, with syntactic formal constraints that are
semanticallymotivated. “This combination of stereotypes and constraints enforces conformance,
making every valid OntoUML model compliant to UFO” (ALMEIDA; FALBO; GUIZZARDI,
2019).

UFO divides all elements into some ontological categories, the first division being
between types and individuals. A type for example would be the kind Computer Operating
System, while an individual would be the available operating systems that we have, like Linux,

Chapter 2. Theoretical Reference and Technologies Used 22

Windows and MacOS. The relation between an individual and a type is called instantiation,
meaning that while types determine the characteristics that something needs to have in
order to be considered of that type, an individual is the thing that exhibits these characteristics.
OntoUML, being a profile of UML class diagrams, only supports the definition of types, meaning
that it does not address the specification of individuals.

Types are further categorized into endurant and perdurant types. Endurant types are
classified into two orthogonal hierarchies: they are partitioned into substantial types or moment
types in one of these hierarchies, and partitioned into sortals and non-sortals in the other.
Substantials are independent entities that exist without the need of another, while moments
are endurants that existentially depend on other entities (GUIZZARDI et al., 2022). “A sortal
is either a kind or a specialization of a kind, and those who are not a kind need to specialize
exactly one kind” (GUIZZARDI et al., 2022). A non-sortal is a type that represents common
properties of individuals of multiple kinds.

Note that there are in fact two orthogonal Endurant Type taxonomies in UFO: (i) one
whose types reflect UFO’s taxonomy of individuals such as Substantial Type, Moment Type,
Object Type, Relator Type, etc.; and (ii) one structured in terms of the sortality, rigidity and
external dependence of types, ultimately leading to the notions of Kind, Subkind, Phase, Role,
Category, Phase Mixin, Role Mixin and Mixin. The existence of two orthogonal hierarchies
means that combinations are possible: a domain type such as Person can instantiate Object Type
and Kind simultaneously. This means that the distinctions that were applied originally to types
of substantials (GUIZZARDI, 2005) are also applicable for moment types (GUIZZARDI et al.,
2022).

2.3.1 Sortals

The following sections focus on presenting every stereotype of OntoUML, starting with
those representing sortals. A fundamental sort of endurant type is Kind, a type which provides
uniform principles of individuation, identity, and persistence to its instances. For example, the
types person, dog, computer, car, organization and marriage are typically considered to be kinds.
Kinds apply to instantiating individuals in all possible situations in which these individuals exist
(GUIZZARDI et al., 2022). In OntoUML, the stereotype ≪kind≫ is a shortcut for Object Kind,
i.e., an Object Type that is also a Kind. Because of this, instances of classes stereotyped≪kind≫
are instances of Object (also termed ‘functional complex’ in UFO). Since the notion of ultimate
sortals (kinds) is also applicable to Collective Types, Quantity Types, Quality Types, Mode Types
and Relator Types, specific stereotypes are introduced: a class stereotyped ≪kind≫ is an Object
Kind, a class stereotyped ≪collective≫ is a Collective Kind, a class stereotyped ≪relator≫ is a
Relator Kind, a class stereotyped ≪mode≫ is a Mode Kind, a class stereotyped ≪quality≫ is
a Quality Kind, and a class stereotyped ≪quantity≫ is a Quantity Kind (GUIZZARDI et al.,
2018).

Chapter 2. Theoretical Reference and Technologies Used 23

The meaning of each of these stereotypes (representing kinds of endurants) is as follows:

• ≪collective≫: An instance of a class stereotyped ≪collective≫ is a collective entity
whose parts (members of the collective) fulfill identical roles in relation to the whole, for
example, a deck of cards or a forest as a collective of trees (GUIZZARDI et al., 2022).

• ≪quantity≫: An instance of a class stereotyped ≪quantity≫ is a portion of home-
omerous amount of matter. For example, a portion of water, soda or sand.

• ≪quality≫: An instance of a class stereotyped ≪quality≫ is a particularized property
that can be understood as a value in a conceptual space, for example, the weight or height
of a person which can be measured in centimeters, or the color of an eye that can be
represented in an RGB tuple.

• ≪mode≫: An instance of a class stereotyped ≪mode≫ is a particularized property that
is not conceived as a value in a conceptual space. For example, the ability of speaking a
language that a person can have, or a disease that is affecting a dog.

• ≪relator≫: An instance of a class stereotyped≪relator≫ is a truth-makers of a material
relation, an entity that needs to exist for two or more related individuals to be connected
through a material relation. For example, a handshake depends on two individuals of the
kind element Person. Examples or relators include social objects such as Marriage, or a
purchase order from an online store.

The additional sortal stereotypes ≪subkind≫, ≪phase≫ and ≪role≫ represent their
counterparts in UFO. They must specialize a unique kind from which they inherit a principle of
identity for their instances. Whether their instances are objects, collectives, quantities, qualities,
modes or relators is already settled by specialized class (which will be stereotyped ≪kind≫,
≪collective≫, ≪quantity≫, ≪quality≫, ≪mode≫ or ≪relator≫). These additional sortal
stereotypes have the following semantics:

• ≪subkind≫: Subkinds are rigid specializations of a kind. For example, we can have
Man as a subkind of Person.

• ≪phase≫: Phases are “sortals whose contingent classification conditions are intrinsic”
(GUIZZARDI et al., 2022). They represent changes in intrinsic properties of instances of
a kind, for example, in the case of the age of instances of the kind person, we can have
phases such as Child, Teenager and Adult.

• ≪role≫: Roles are “sortals whose contingent classification conditions are relational”
(GUIZZARDI et al., 2022). They are anti-rigid specializations of kinds, for example, the
role student of the kind person.

Chapter 2. Theoretical Reference and Technologies Used 24

2.3.2 Non-Sortals

As opposed to sortals, “non-sortals are types that represent common properties of
individuals of multiple Kinds.” (GUIZZARDI et al., 2022). The non-sortals are categories, phase-
mixins, role mixins and mixins.

• ≪category≫: Categories are “rigid types that define essential properties for their
instances, e.g., the category ‘physical object’ describing the properties of having a
mass and a spatial extension, common to things of the kinds car, person, bridge, cow,
etc.;”(GUIZZARDI et al., 2022). Or, for example, we can have the category Furniture,
which describes properties of things that are usually used in a house by humans for many
purposes.

• ≪phaseMixin≫: Phase mixins are “anti-rigid types that define contingent properties
for their instances. Their instantiation is characterized by intrinsic contingent conditions.
For example, the phase mixin ‘living animal’ may apply to instances of the kinds person,
dog, and horse” (GUIZZARDI et al., 2022).

• ≪roleMixin≫: Role mixins are “anti-rigid types that define contingent properties for
their instances” (GUIZZARDI et al., 2022), aggregating instances with different identity
principles. For instance, the role mixin customer can be specialized by the role personal
customer of the kind person, or by the role corporate customer of the kind company.

• ≪mixin≫: Mixins are “semi-rigid types that define properties that are essential to some
of their instances but accidental to some other instances (e.g., being a ‘music artist’ is
essential to bands but accidental to people).” (GUIZZARDI et al., 2022).

Figure 2 illustrates an OntoUML example model of a University, showcasing some
details of a Person with attributes, various life phases, and the roles encompassing a Person’s
involvement as a University Student and a University Professor. The model encapsulates essen-
tial elements found within a university setting, including classrooms, staff, and departments.
Additionally, it incorporates two relators that establish the contractual relationship between
students and professors within the university.

Chapter 2. Theoretical Reference and Technologies Used 25

Figure 2 – OntoUML model example representing a University with departments and class-
rooms, professors and students.

2.3.3 Ontological Natures

As part of OntoUML’s evolution, OntoUML 2.0 was proposed changing some existing
elements of UFO and introducing a new concept called ontological natures (GUIZZARDI et al.,
2018). When we look at an ultimate sortal stereotype, i.e.≪kind≫,≪collective≫,≪quantity≫,
≪quality≫, ≪mode≫, and ≪relator≫ stereotypes, based on the stereotype kind, one can
already determine the nature of the instances of this element. For instance, a class with the
stereotype ≪relator≫ would have the nature of relators. Also, other sortals, i.e. ≪subkind≫,
≪role≫, ≪historicalRole≫ and ≪phase≫ need to specialize a unique kind to provide their
nature. The same is not valid for non-sortals, i.e. ≪category≫, ≪mixin≫, ≪phaseMixin≫,
≪roleMixin≫, and≪historicalRoleMixin≫ stereotypes. At first, an abstract category like Social
Entity would be able to be specialized by kinds (functional complex) or relator kinds without the
need to specify anything. In order to improve the specification of non-sortals, the functionality
to define the ontological nature of these elements was added, defining that instances of that
category would have to follow this specific nature. In that way, for example, a category could
have its instances restricted only to relator kinds by specifying its nature to relators. This
was added to OntoUML using the restrictedTo UML ‘tagged value’ that can be assigned to a
non-sortal to establish the possible natures of their instances (GUIZZARDI et al., 2022).

Chapter 2. Theoretical Reference and Technologies Used 26

2.3.4 Beyond Endurant Types

After the development of the core concepts of UFO-A in OntoUML, UFO-B elements
were presented to include perdurants, expanding the theory. They are presented in Figure 1 as
opposed to Endurant types and individuals. Two stereotypes were included, ≪events≫ and
≪situations≫. Events are individuals composed of temporal parts and happen in time, meaning
that they are a set of temporal parts accumulated (GUIZZARDI et al., 2013). Some examples
are a party, a basketball game, or a music festival. They can be composed of other events, for
example, the fall of the Roman Empire is composed of many events like Rome being attacked
by barbarians and weather problems that disrupted harvests, deepening the crisis. An event
composed of other events is a Complex Event, while an event without any smaller part is an
Atomic event. They are ontologically dependent entities in the sense that they existentially
depend on objects in order to exist.

Another important detail is that “...by introducing events in the model, our universe of
discourse contains not only the entities that exist in a given circumstance but also all entities
that have existed in that history of our universe of discourse up to that point” (ALMEIDA;
FALBO; GUIZZARDI, 2019). That means that historical semantics were included in models
because we are only taking into account events that occurred in the past. For example, in
Figure 3 we can see two different ways to represent a person being a soccer player. One of
them considers the event of the soccer match, therefore, the role played by this person is a
historical role, that happened at the same temporal part of that match. The other option is
representing the contract established between a player and a soccer club, meaning that this
person is a soccer player because of this ongoing relationship instead of only one event. The
participation stereotype of this relation represents the player participating in the soccer match.
Also, another important detail is that events are immutable, in contrast to relators, which can
change their properties while remaining the same (ALMEIDA; FALBO; GUIZZARDI, 2019).

Figure 3 – Diagram describing a soccer match with roles of a Person. Source: Almeida, Falbo e
Guizzardi (2019)

On the other hand, situations are inherently tied to specific points in time. Therefore,
two qualitatively identical situations occurring at different time points are regarded as distinct
in numerical terms (GUIZZARDI et al., 2013). For example, the situation of “Mary having

Chapter 2. Theoretical Reference and Technologies Used 27

long hair today” and the situation of “Mary having long hair some moment in the past” are
considered separate instances.

2.3.5 High order types as Endurants

Until recently, OntoUML reflected UFO’s foundation which defines that domain entities
are divided in types and instances. However, not all entities conform to that definition, and
accumulate at the same time instance-like and type-like characteristics. One example is from
the context of software development, where we could define types of tasks that need to be
executed during software development, and also classify the types of types of tasks. Therefore,
in order to conceptualize the software development domain, we require representing entities
in different classification levels, in this case, tasks, types of tasks, and types of types of tasks.
This differentiates from the classic two-level division between classes and instances, and
allows classes that are instances of other classes. This is presented in the Multi-level Theory
(MLT) (ALMEIDA; FONSECA; CARVALHO, 2017). Based on this theory, high-order types were
incorporated in UFO and OntoUML.

To incorporate high-order types, the notion of instantiation (iof) provided by MLT is
integrated in UFO, “where iof is a primitive relation that holds between an instance e and a type
t in a world w where t classifies e” (FONSECA et al., 2022). In order to enable the declaration of
high-order kinds, the stereotype ≪type≫ was introduced in OntoUML. The ≪instantiation≫
is “used to provide specialized semantics to an association between a high-order type and a base
type” (FONSECA et al., 2022). Also, new tagged values were included. restrictedTo now includes
type, in order to account for the type’s ontological nature. isPowertype is used to determine if “it
is a Cardelli powertype of the base type” or if it is an Odell powertype, i.e., “a categorizer of the
base type” (FONSECA et al., 2022). Lastly, an order tagged value was included to allow defining
the order (ALMEIDA; FONSECA; CARVALHO, 2017) of the declared type. Figure 4 shows an
example of type definition in a model about Ships. The type Ship Type is a powertype of order
2, and is associated with the kind Ship with an instantiation relation.

Figure 4 – Diagram describing a Ship Type with. Source: Fonseca et al. (2022)

Chapter 2. Theoretical Reference and Technologies Used 28

2.3.6 OntoUML as a Service

With this foundation, a group of tools was developed to support the development
of UFO-based models through OntoUML using microservices. Called OntoUML as a Service
infrastructure (OaaS) (FONSECA et al., 2021), this infrastructure includes:

• ontouml-js: A library developed in TypeScript that allows the creation and serialization
of OntoUML models using JavaScript methods.

• ontouml-schema: A JSON schema that defines a set of rules to how OntoUML models
are serialized in this format.

• ontouml-server: An HTTP server created to provide validation and transformation
features to OntoUML models in JSON format. The validation service takes in a serialized
JSON model, applies syntactic validations to it, and if there are any errors, it returns an
array of those errors, otherwise it return that the model is valid. The transformation
service transforms a serialized JSON model into gUFO-based OWL ontologies.

• ontouml-vp-plugin: A plugin for the Visual Paradigm tool created originally for UML.
The plugin offers a range of helpful features that allow the modeler to visualize OntoUML
constructs with ease and modify them. Additionally, the plugin is designed to connect
with ontouml-server, providing users with validation and transformation capabilities.

2.4 Technologies Used

In this section, we will present the main technologies that were used during the devel-
opment of this work, with a brief explanation of each.

2.4.1 Langium

Langium1 is an open-source tool developed by TypeFox2 with first-class support for
the Language Server Protocol (LSP)3. It utilizes TypeScript and runs on the Node.js runtime.
With Langium, it is possible to develop textual Domain Specific Languages (DSLs) that can be
used in IDEs such as VS Code, Eclipse Theia, and also in Web applications.

The tool generates a typed Abstract Syntax Tree (AST) along with default implementa-
tions for many LSP features. Thus, it automatically generates extensions for VS Code based on
the created DSL, enabling features such as auto-complete, syntax highlighting, validators, code
generators, and the development of a command-line interface (CLI).
1 <https://langium.org/>
2 <https://www.typefox.io/>
3 <https://microsoft.github.io/language-server-protocol/>

https://langium.org/
https://www.typefox.io/
https://microsoft.github.io/language-server-protocol/

Chapter 2. Theoretical Reference and Technologies Used 29

Being created by the same team that produced a widely popular similar tool (for the
Eclipse world), Xtext4, Langium is robust and aims to maintain the concepts that made Xtext
successful while improving them for another platform in a simple and clear manner.

2.4.2 Visual Studio Code

Visual Studio Code5, also known as VS Code, is a source code editor available for
Windows, Linux, and macOS, developed by Microsoft. It includes support for debugging, built-
in git version control, syntax highlighting, intelligent code completion, snippets, and code
refactoring. It is highly customizable, allowing users to modify themes, keyboard shortcuts,
and various preferences, which can be synchronized across devices.

Although the base version of VS Code may not have support for certain languages
and functionalities, it can be extended by installing extensions. With the help of extensions,
it becomes a powerful programming tool and can be considered an Integrated Development
Environment (IDE). The extensions assist in syntax highlighting, code formatting, adding new
snippets, refactoring, code execution and debugging, version control, error visualization, and
many other functionalities.

In this project, VS Code is essential as it executes the extension that enables the utiliza-
tion of all Tonto features. The IDE also provides extensive support for extension development,
along with rich and detailed online documentation.

2.4.3 Visual Studio Code Extensions API

Visual Studio Code was created with extensibility in mind, allowing developers the
freedom to add their own functionalities. Virtually any part of the code editor can be customized
using its extension API, including elements of the User Interface (UI) and icons. Some built-in
editor elements are developed using this API, contributing to its improvement by the project’s
own contributing team.

In this project, Tonto extensively utilizes this API to enhance its developer interface
and facilitate the visualization of the developed models. Part of this usage is done directly
through the Langium library, while another part is done natively. Thus, the utilization of this
technology is essential to ensure the quality of the project.

2.4.4 Development and Execution Technologies

TypeScript6 is a strongly typed programming language that is built on top of another
programming language, JavaScript. It adds additional syntax to JavaScript to support error
4 <https://www.eclipse.org/Xtext/>
5 <https://code.visualstudio.com/>
6 <https://www.typescriptlang.org/>

https://www.eclipse.org/Xtext/
https://code.visualstudio.com/
https://www.typescriptlang.org/

Chapter 2. Theoretical Reference and Technologies Used 30

identification at compile time instead of runtime. TypeScript transpiles all its code to JavaScript,
which allows it to run in any environment that supports JavaScript. In the case of this project,
it is executed in the Node.js environment.

Node.js7 is an open-source, cross-platform JavaScript runtime environment. It was
developed to execute JavaScript code beyond the browser, targeting current operating systems.
Node.js is designed for building scalable network applications and is an asynchronous, event-
driven runtime, allowing multiple connections to be executed concurrently. In this project,
Node.js serves as the execution environment for Tonto as it runs within the Language Server
of VS Code. Therefore, it is possible to leverage all the available APIs of Node.js if needed.

Vitest8 is a framework that enables the development of unit tests for Node.js, utilizing
TypeScript and compatible with the Jest framework. It focuses on performance, ensuring fast
test execution.

2.5 Related Work

Numerous works present conceptual modeling techniques using diagrammatic/visual
or textual tools, with some being based on ontologies. Here, we also present works that, in
some way, develop textual syntax for modeling languages, even though their focus is not
on conceptual modeling. The first work to be highlighted is ML2, which, as presented by
Fonseca (2017), is a language focused on multi-level modeling. It allows for an approach where
classes can be instances of other classes, instead of the conventional approach where we have
a separation between classes and individuals that instantiate these classes. The syntax of ML2
is defined using the Xtext tool9 (a precursor of Langium in the Eclipse environment), enabling
the definition of elements such as Classes, Datatypes, Generalization sets, Attributes, among
others. Overall, ML2 demonstrates the potential of textual modeling languages in the context
of multi-level conceptual modeling.

PlantUML10 is a textual language that allows a modeler to write textual specifications of
UML diagrams, including class diagrams, use case diagrams, state diagrams, and many others.
It has a simple syntax and is able to create visual elements based on textual input. It focuses on
UML as a general purpose language.

Ontological Modeling Language (OML)11 is a language developed by the Jet Propulsion
Laboratory. It allows users to create ontology-based models using a user-friendly syntax, and is
based on UML and inspired by OWL 2. Moreover, it is implemented using the Eclipse Modeling
Framework (EMF) and has a plugin for the Eclipse IDE and for VSCode IDE, allowing syntax
7 <https://nodejs.org/en/>
8 <https://vitest.dev/>
9 <https://www.eclipse.org/Xtext/>
10 <https://plantuml.com/>
11 <http://www.opencaesar.io/oml/>

https://nodejs.org/en/
https://vitest.dev/
https://www.eclipse.org/Xtext/
https://plantuml.com/
http://www.opencaesar.io/oml/

Chapter 2. Theoretical Reference and Technologies Used 31

highlighting, live validation, and content assist. Also, it allows checking for logical consistency
of created models.

None of these languages target UFO-based models specifically. Nevertheless, they have
been used loosely as sources of inspiration for the syntax of Tonto.

32

3 Tonto: A textual syntax for modeling

In this chapter, we present the created language Tonto, along with its tool support. First,
we discuss the requirements that were defined for the language and associated tools. Then, we
present the Tonto grammar1 in detail and show how each definition relates to corresponding
UFO/OntoUML elements. After that, we present the Visual Studio Code extension that was
developed to allow the creation of models in Tonto. Lastly, we introduce the Tonto Package
Manager and discuss how it facilitates the modularization of Tonto projects.

3.1 Requirements

The following requirements were defined for the creation of Tonto language:

• Use a textual syntax that is familiar to users of mainstream object-oriented programming
languages (such as Java, Typescript and Swift) and UML.

• Cover the maximum amount of OntoUML constructs, including classes, stereotypes of
classes, relations, stereotypes of relations, cardinalities, meta-properties, generalization
sets, ontological natures, high-order types, specializations, attributes, datatypes and
enumerations.

• Support the production of syntactically correct models.

Also, to increase usability, some requirements for the VS Code extension and Tonto
tooling were defined:

• Assist the modeler in understanding model errors with (real-time) syntax verification
based on OntoUML/UFO rules.

• Assist the modeler in producing correct Tonto models with features such as code snippets
and auto-complete.

• Enable the importing of models defined in OntoUML (and serialized in JSON) to Tonto.

• Enable the exporting of Tonto models to OntoUML tools.

• Enable transparent access to the ontouml-server functionalities, leveraging these func-
tionalities available for OntoUML models also for Tonto models (including generation of
OWL implementations).

• Support the modularization of Tonto-based conceptual modeling projects.
1 <https://github.com/matheuslenke/Tonto>

https://github.com/matheuslenke/Tonto

Chapter 3. Tonto: A textual syntax for modeling 33

3.2 Tonto Grammar

We focus here on every element that can be declared in a Tonto specification (a .tonto
file). The full Tonto grammar is defined in the Langium EBNF syntax and can be found in
Appendix A.1.

The first declaration in a Tonto specification is equivalent to the definition of a package
in UML/OntoUML, using the keyword package. It establishes that all the declarations within a
file belong to the named package at the top of a file. After the package name, we have a set of
declaration statements. Every statement can be either: (i) a class declaration or (ii) an auxiliary
declaration.

Every class declaration (i) follows the idea of declarations in popular programming
languages like Java, where we have a keyword for the type of the element followed by its
name or identifier. A number of UFO types mentioned in Chapter 2 and corresponding to
OntoUML stereotypes lead to keywords of a class declaration in Tonto: kind, collective,
quantity, quality, mode, intrinsicMode, extrinsicMode, relator, type, powertype,
subkind, phase, role, historicalRole, event, situation, category, mixin, phaseMixin,
roleMixin, historicalRoleMixin. There is also the possibility of using the neutral class
keyword when the modeler has not yet specified the ontological category applicable to a class.

Auxiliary declarations (ii) include datatypes, enumerations, generalization sets and
associations (when defined outside the body of class declarations).

Figure 2 in Chapter 2 contains a diagram with an example of an OntoUML model.
Throughout this chapter, we will explain Tonto grammar using some elements of this model.

3.2.1 Class and Datatype Declarations

Figure 5 shows a piece of OntoUML model for a domain involving persons, some of
their phases and roles. The class Person is stereotyped ≪kind≫ and includes some attributes
that we will address later in this chapter. The classes Child, Teenager, and Young Adult are
(incomplete) phases of a person’s life, and because of that, they have the stereotype ≪phase≫.
Also, we have the role University Student that a person can play in the scope of a relationship
with a university, and hence the class is marked with the stereotype ≪role≫. Further, there
are roles for University Students that classify them into Former Student or an Active Student,
depending on whether this person’s studies are finished.

We can now have a look at the Tonto version of this model in Listing 3.1. First, we
have the package definition related to the context of our model. Using the kind, phase, and
role keywords, we declare each element of the model. To represent the generalization relation,
Tonto uses the specializes keyword after the name of the class, and each class can specialize
as many elements as it needs.

Chapter 3. Tonto: A textual syntax for modeling 34

Figure 5 – Example model representing a person’s life stages and a possible role as a student,
built in the OntoUML plugin of Visual Paradigm tool.

Listing 3.1 – Tonto model based on Figure 5.

1 package PersonPhases
2

3 kind Person
4

5 phase Child specializes Person
6 phase Teenager specializes Person
7 phase YoungAdult specializes Person
8

9 role UniversityStudent specializes Person
10 role FormerStudent specializes UniversityStudent
11 role ActiveStudent specializes UniversityStudent

One thing missing on Listing 3.1 with respect to Figure 5 is the definition of Person
attributes. We will focus now only on the kind Person with its attributes, and we can notice that
we have attributes with 4 different datatypes. By default, Tonto defines the following datatypes:
number, string, boolean, date, time and datetime. We don’t have pre-defined datatypes for int,
EyeColor, and PhoneNumber, so we need to define them in order to be able to use them. Due to
Tonto’s multi-file system, every .tonto file refers to only one package. To be more organized,
we could define the datatypes of our model in a separate package called CoreDatatypes. We can
see the definition of this package on Listing 3.2. The first element is the datatype PhoneNumber,
created to be able to hold information about a simple phone number, with country code and
the rest of the number at bodyNumber. We define each attribute as int because phone numbers
can only have integer digits. Because numbers are broader than integers, we need to declare
this datatype called int, which is a specialization of number, representing all integer numbers.
This definition of integer is only nominal, and Tonto does not allow the creation of any logic

Chapter 3. Tonto: A textual syntax for modeling 35

restriction to guarantee that the number is an integer. After the type of the attribute, we can
declare the cardinality of that attribute. Cardinality declarations are optional, with default
exactly one (i.e., [1]).

The last declaration is a specific kind of datatype, an enumeration. In enumerations, we
have literals declared inside it, and when we define an attribute datatype as an enumeration,
the meaning is that a value of this datatype is one of the possible literals defined. In this case,
the eye color could be blue, green, brown, or black.

Listing 3.2 – Tonto package of custom DataTypes.

1 package CoreDatatypes
2

3 datatype PhoneNumber {
4 countryCode: int [1]
5 bodyNumber: int [1]
6 }
7

8 datatype int specializes number
9

10 enum EyeColor {
11 Blue ,
12 Green ,
13 Brown ,
14 Black
15 }

After defining the core datatypes in a different Tonto file, we want to use it to define
the attributes of Person. In this case, because elements are on different packages, we must first
import the contents of our CoreDatatypes package to our PersonPhases package. If these are not
imported, the package will not be able to make a reference to the other element. This decision
was made to prevent many suggestions from polluting the auto-completion functionality of VS
Code as models grow.

On Listing 3.3, we can see the new version of the kind Person with attributes and the
correct datatypes. There are two options for using imported elements: with their name (e.g.,
EyeColor); with a qualified name (e.g., CoreDatatypes.PhoneNumber); the developer can decide
which one is better to avoid ambiguity. In order to make it more complete, the cardinality of
each attribute was added. The default cardinality is exactly one [1] for attributes and association
ends if none is defined. Because people usually have a name, and they can have more than one,
the cardinality of this attribute is [1..*].

There is also the possibility of specifying meta-attributes of attributes, enclosed by
brackets. The birthDate attribute has a meta-property called const (i.e. immutable). In addition,
the attribute preferredNames has the meta-property ordered, meaning that this list of preferred

Chapter 3. Tonto: A textual syntax for modeling 36

names has an order of preference. Every meta-property in attributes needs to be defined inside
of brackets at the end of the attribute declaration. In classes, by default, every attribute is not
const, not ordered, and not derived. In Datatypes, attributes are always immutable. Finally,
people could have one eye color or two in special cases, and everyone can have no phone
number or many of them.

Listing 3.3 – Kind Person with attributes with custom Datatypes.

1 import CoreDatatypes
2

3 package PersonPhases
4

5 kind Person {
6 name: string [1]
7 preferredNames: string [1..*] { ordered }
8 age: number [1]
9 birthDate: date [1] { const }
10 eyeColor: EyeColor [1..2]
11 phoneNumber: CoreDatatypes.PhoneNumber [0..*]
12 }

3.2.2 Generalization Set

Another important construct in OntoUML is a Generalization set, based on the same
construct in UML. An association is formed between a general element and a group of its
specializations through the use of a generalization set. They can be decorated with the keywords
disjoint and complete. The first keyword indicates that each instance of the superclass can
only instantiate a maximum of one of the subclasses. The second keyword defines scenarios
where instances of the general class are required to instantiate at least one of the subclasses.
Similarly to the direct specializations on the model in Figure 3.1, we could utilize generalization
sets. Tonto generalization set syntax is based on ML2 (FONSECA, 2017). On Listing 3.4, line 7,
we have a Tonto short syntax implementation of this generalization set, being the simplest
form to declare it and fitting in one line.

On Listing 3.5, from lines 5 to 8, we have the same generalization set in an expanded
syntax using brackets that is more organized for declarations specializing more elements. The
keywords general determine the general element, while the keyword specifics defines all
specific elements, separated by a comma.

Lastly, on Listing 3.6 and based on an example presented by Fonseca (2017), we can add
the type PersonTypeByAge as a categorizer of the generalization set. The type PersonTypeByAge
is declared, and each phase previously declared now are an instance of this type. From lines 7
to 11, we have the same generalization set in an expanded syntax, however, now specifying

Chapter 3. Tonto: A textual syntax for modeling 37

the categorizer of this generalization set. It is important to notice that gensets mentioned on
Listings 3.4, 3.5 and 3.6 are all defined as disjoint and complete on this model, but if the
model requires, it could be only disjoint, only complete, or none of them, omitting its keywords.

Listing 3.4 – Example of simple usage of Generalization Sets.

1 type PersonTypeByAge
2

3 phase Child
4 phase Teenager
5 phase Adult
6

7 disjoint complete genset PhasesOfPerson where Child , Teenager
, Adult specializes Person

Listing 3.5 – Example of Generalization Set with complete syntax.

1 phase Child
2 phase Teenager
3 phase Adult
4

5 disjoint genset PhasesOfPerson {
6 general Person
7 specifics Child , Teenager , Adult
8 }

Listing 3.6 – Example of Generalization Set with categorizer.

1 type PersonTypeByAge
2

3 phase Child (instanceOf PersonTypeByAge)
4 phase Teenager (instanceOf PersonTypeByAge)
5 phase Adult (instanceOf PersonTypeByAge)
6

7 disjoint complete genset PhasesOfPerson {
8 general Person
9 categorizer PersonTypeByAge
10 specifics Child , Teenager , Adult
11 }

3.2.3 Ontological Natures

Additionally, we have the possibility of declaring nature restrictions for elements in
Tonto. As explained in Chapter 2, elements could have nature restrictions based on their

Chapter 3. Tonto: A textual syntax for modeling 38

stereotypes. Because ultimate sortals already have a nature restriction, they cannot specify any
different nature. Taking for example the model in Figure 5, classes Young Adult and University
Student are base sortal stereotypes, ≪phase≫, and ≪role≫, respectively. It means that they
don’t carry an ontological nature restriction by themselves, and this should be provided by the
ultimate sortal that they specialize. As a consequence of both elements specializing the kind
Person, it means that they carry the nature of a kind, which is functional-complex.

Another option is to define nature restrictions explicitly in the class declaration. This
is useful when having non-sortal elements that can specify the nature of their instances (and
since they are non-sortals, they do not specialize an ultimate sortal from which to inherit
the nature of their instances). One example could be a category named Social Entity that is
restricted to functional complexes, and is specialized by the kind Hospital. In Listing 3.7 we can
see the nature declaration of this example.

One addition that Tonto has in comparison with OntoUML is a syntactic sugar for a
nature called of objects, representing Substantial Endurants. It is a short syntax to declare the 3
natures of substantials: functional complexes, collectives and quantities.

Listing 3.7 – Example of nature declaration in Tonto

1 package TontoNatures
2

3 category SocialEntity of functional-complexes
4

5 kind Hospital specializes SocialEntity

3.2.4 Relations

Relations (or UML associations) are an important part of conceptual modeling in
OntoUML, providing meaning to the connections between elements. They are also a core
concept in Tonto and can be declared in two different ways. The first way is called an internal
relation, which is defined inside the body of the declaration of a class. The second way is called
an external relation and can be defined outside the body of class declarations.

We use the OntoUML model in Figure 6 to discuss relations in the sequel. This model
presents University as a ≪kind≫ that specializes the category Organization of functional
complexes. The university possibly has many Classrooms, and that is stated with the aggregation
relation between them named ‘has’. Because the classroom is a specific kind of room, it
specializes the kind Room. Also, the university has one or more Departments, and this is
expressed with an aggregation relation with the stereotype ≪componentOf≫. The department
is composed by a JuniorStaff and a SeniorStaff, also represented with an aggregation relation.
These staffs are subkind of the collective Staff. Moreover, we have a roleMixin Employer, that
aggregates properties in common to everything that hires someone. The roleUniversityEmployer

Chapter 3. Tonto: A textual syntax for modeling 39

represents the capacity that this university have to hire employees, for example for its junior
and senior staff.

Figure 6 – Example model representing a University with departments and classrooms.

From Figure 6 we can represent in Tonto the kind University with its relations in List-
ing 3.8. First, on lines 3 and 4we have a relation named haswith the stereotype≪componentOf≫,
stated with a keyword prefixed with the @ symbol (a syntax inspired in Java annotations). Every
OntoUML relation stereotype can be declared that way. Being an internal relation, the element
of the first end is the class holding the relation and its name is omitted. Relation specification
works like a mirror (inspired in the UML notation for association, which is a line with opposing
association ends), where the definition order for the element in the first end is inverted for the
second end. The order of declaration in the first relation end is, after the relation stereotype:
class ID (in case of an external relation); first end meta-attributes; first end name; first end
cardinality and the relation connector with its name. Meta-properties of a relation can be
ordered, const and derived.

Moreover, the first cardinality represents the cardinality on the University end, and the
second cardinality of [1] represents the Department end of the relation. The default cardinality
of relations is one to one, and can be omitted in that case. Because it is an aggregation relation,
the keyword ‘<>- -’ is used. For associations, the keyword is ‘- -’, and for composition is
‘<o>- -’. These keywords defines the ‘middle’ point of an relation, where the relation name
can be defined after this connector keyword, and an extra keyword ‘- -’ is added after its
name.

Chapter 3. Tonto: A textual syntax for modeling 40

After the second end class ID, two other properties can be defined: a specialization
of the relation and the inverse of this relation. Specialization uses the same specializes

keyword used in classes, and inverses use the inverseOf keyword, both of them followed by
the relation ID.

Listing 3.8 – Example of the University kind in Tonto with internal relations.

1 kind University specializes Organization {

2 address: Address

3 @componentOf

4 [1] <>-- has -- [1..*] Department

5 @componentOf

6 [1] <>-- [0..*] Classroom

7 }

Further, from Figure 6 we can express the relation between JuniorStaff and SeniorStaff
externally. Listing 3.9 shows the definition of these two external relations. The only difference
between them is the need for the keyword relation and the name of the first end class; every
other component of the relation is declared in the same way as an internal relation and in the
same order.

Listing 3.9 – Example of an external Relations.

1 relation Department [1] <>-- [1] JuniorStaff

2 relation Department [1] <>-- [1] SeniorStaff

Listing 3.10 shows the model from Figure 6 completely transformed to Tonto, including
every class and relation.

Listing 3.10 – Example of basic University model in Tonto.

1 import CoreDatatypes

2 package University

3

4 category Organization

5

6 kind University specializes Organization {

7 address: Address

8 @componentOf

9 [1] <>-- has -- [1..*] Department

10

11 [1] <>-- [0..*] Classroom

12 }

13

Chapter 3. Tonto: A textual syntax for modeling 41

14 kind Room

15 subkind Classroom specializes Room

16

17 kind Department {

18 name: string

19 [1] <>-- [1] JuniorStaff

20 }

21

22 collective Staff

23

24 subkind JuniorStaff specializes Staff

25 subkind SeniorStaff specializes Staff

26

27 relation Department [1] <>-- [1] JuniorStaff

28 relation Department [1] <>-- [1] SeniorStaff

29

30 roleMixin Employer

31

32 role UniversityEmployer specializes Employer , University

Lastly, we could define relations between elements in different packages. The final
model, joining the University and PersonPhases packages in Figure 2, has relator elements
that connect both packages. The first one is the EmploymentContract relator, representing
the relationship between an Employee and an Employer. The second relator represents the
Enrollment of a university student and the university. In Listing 3.11, we can see how this is
declared on the University package. The final version of the University model in Tonto can be
found in Appendix B.

Listing 3.11 – Example of relators added to the University package.

1 role Employee specializes Person

2 role UniversityProfessor specializes Employee

3

4 relator EmploymentContract {

5 @mediation

6 [1..*] -- [1] Employee

7

8 @mediation

9 [1..*] -- [1] Employer

10 }

11

Chapter 3. Tonto: A textual syntax for modeling 42

12 relator Enrollment {

13 @mediation

14 [0..*] -- [1] University

15

16 @mediation

17 [1..*] -- [1] UniversityStudent

18 }

A template for the full definition of internal and external relations can be found in
Listing 3.12, containing every possible element to be declared on a relation. In lines 2 and 3, we
have the template of an internal relation from the kind Person, and on lines 6 and 7 we have
the template of an external relation.

Listing 3.12 – Template of relation definitions in Tonto

1 kind Person {
2 @stereotype
3 ({ metaAttributes } firstEndName) [1] <>-- relationName --

[1] ({ metaAttributes} secondEndName) SecondClass
specializes OtherRelation

4 }
5

6 @stereotype
7 relation FirstClass ({ metaAttributes } firstEndName) [1] --

relationName -- [1] ({ metaAttributes} secondEndName)
SecondClass specializes OtherRelation

Table 1 shows a full list of available stereotypes for relations, with their compatible
kind of association.

3.3 Tonto Visual Studio Code Extension

With Langium, a Language Server Protocol (LSP) is generated for a textual language,
and a Visual Studio Code extension is created. Figure 7 shows the usage of this extension,
demonstrating the University example. In VSCode, we open a directory that is the root of
our workspace, and every file inside it is part of the project; similarly, the Tonto extension2

considers every file currently in the workspace with the .tonto extension to be part of the
same project, with every file being a different package. Every file is automatically processed by
the langium library, creating a LangiumDocument. This document goes through seven states,
from parsing the AST to computing scopes, linking cross-references, doing validations, and
then waiting for new changes.
2 <https://marketplace.visualstudio.com/items?itemName=Lenke.tonto>

https://marketplace.visualstudio.com/items?itemName=Lenke.tonto

Chapter 3. Tonto: A textual syntax for modeling 43

Table 1 – Table of available relation stereotypes in Tonto

Stereotype Association (––) Aggregation (<>––) Composition(<o>––)
material x
derivation x
comparative x
mediation x
characterization x
externalDependence x
componentOf x x
memberOf x x
subCollectionOf x x
subQuantityOf x
instantiation x
termination x
participational x
participation x
historicalDependence x
creation x
manifestation x
bringsAbout x
triggers x
inherence x
value x
formal x

The extension’s first feature provides a way to visualize errors in the model because of
the validators implemented automatically by Langium and those custom validators added to the
extension based on OntoUML semantic rules. In Figure 8, we have an example of the semantic
error flagged by a custom validator. This error occurs because a class with the stereotype role
must specialize one ultimate sortal, and VScode also displays the error inline. This real-time
visualization allows the modeler to spot errors in every new element added (without the need
for special interventions such as clicking on a button).

Another important feature is the commands available at the bottom of the editor and
at the command palette. They are responsible for executing the same commands available for
the Tonto CLI. From Figure 7, we can see the following buttons:

• Tonto -> JSON: This generates a JSON from the model.

• Tonto -> gUFO: Validate the model with ontouml-server API.

• JSON -> Tonto: This generates a Tonto project from a JSON file.

• Validate Model: Validate the model with ontouml-server API.

• TPM Install: Install dependencies based on the Tonto Package Manager (TPM)

Chapter 3. Tonto: A textual syntax for modeling 44

Figure 7 – VS Code running the Tonto extension with the PersonPhases package code

Every command automatically recognizes the workspace’s root and executes from that
directory. But, in some cases, it is needed to run a command in another directory in the same
way provided by the CLI. In that case, they are available in the command palette and will ask
the user to input the directory to be analyzed.

Finally, this extension enables the user with smart code completion and ready-to-
use snippets that empower and fasten the development of models. An example of how code
completion works can be seen in Figure 9. Because of that feature, it is easy to get used to
the syntax, and there is no need to write some boilerplate code that could slow development.
Figure 10 shows an example of a list of snippets available for Tonto in the current context, and
Figure 11 shows the usage of an internal relation snippet.

Chapter 3. Tonto: A textual syntax for modeling 45

Figure 8 – VS Code running the Tonto extension showing the problems of the model in the
problems tab and at the current line with error

Figure 9 – Tonto VSCode extension showing an auto-complete example.

Chapter 3. Tonto: A textual syntax for modeling 46

Figure 10 – Tonto VSCode extension showing snippets list.

Figure 11 – Tonto VSCode extension showing the usage of an internal relation snippet.

3.4 Tonto Validators

In this section, we will describe each validator implemented on Tonto LSP. Every
validator runs in the context of a package automatically when there are changes in code.
All validators were inspired by the ones developed at ontouml-js, with some changes due to
differences between Tonto and JSON syntaxes.

Chapter 3. Tonto: A textual syntax for modeling 47

3.4.1 Ultimate Sortal specialization validator

This validator checks whether the class declaration is an Ultimate Sortal and whether
it specializes other Ultimate sortals. Because ultimate sortals should not do this specialization,
this shows an error as presented in Figure 12.

Figure 12 – Tonto VSCode extension showing an error of the Ultimate sortal validator.

3.4.2 Sortal specializes more than one ultimate sortal validator

This validator checks whether the class declaration is a sortal and calculates how many
ultimate sortals it specializes directly or indirectly, analyzing every element until the topmost
one. If it specializes in more than one, it displays an error as shown in Figure 13, informing the
modeler that the class should specialize only one ultimate sortal.

Chapter 3. Tonto: A textual syntax for modeling 48

Figure 13 – Tonto VSCode extension showing an error of the Sortal specializes Ultimate sortal
validator.

3.4.3 Sortal should specialize ultimate sortal validator

This validator checks whether a class declaration is a sortal and calculates how many
ultimate sortals are specialized, similarly to the previous validator. If it does not specialize any,
it shows an error that it should specialize one. In Figure 14 we can see an example of this error.

Figure 14 – Tonto VSCode extension showing an error of the sortal should specialize ultimate
sortal validator.

Chapter 3. Tonto: A textual syntax for modeling 49

3.4.4 Rigid specializes Anti-rigid validator

This validator verifies whether, in a generalization between two classes, the general
class has an Anti-rigid stereotype and the specific class has a rigid or semi-rigid stereotype,
showing an error like in Figure 15 if that is the case.

Figure 15 – Tonto VSCode extension showing an error of Rigid element specializing Anti-rigid
validator.

3.4.5 Compatible Natures of sortals validator

This validator verifies whether the class declaration is a (non-kind) base sortal (subkind,
phase, role, historicalRole) and whether it defines a nature for its instances. The nature can
be defined explicitly with tonto grammar, or it could be inherited from specialized classes. It
shows an error when a nature specification is missing. For example, subkind Customer should
specialize an ultimate sortal like kind Person. Figure 16 shows an example of this error.

Chapter 3. Tonto: A textual syntax for modeling 50

Figure 16 – Tonto VSCode extension showing an error of the Compatible natures of sortals
validator.

3.4.6 Compatible Natures validator

This validator verifies if non-sortals or base sortals specialize incompatible natures
based on elements that it specializes in. For example, if a class is declared as role Customer of
objects and it specializes in the kind Person, it should have an error like in Figure 17

Figure 17 – Tonto VSCode extension showing an error of the Compatible Natures validator

Chapter 3. Tonto: A textual syntax for modeling 51

3.4.7 Redundant Natures

This validator verifies if an explicit declaration of nature is redundant for the element.
This happens for ultimate sortals that already have a defined nature and cannot specialize
other natures. Also, this happens for cases when a sortal or non-sortal inherits its nature from
an ultimate sortal and tries to explicitly define the same nature when that is not needed. On
Figure 18 we have two examples: the first is a kind, that already have the nature of functional
complexes, so there is no need to specify it, and an example of a role Student that already have
its nature defined by specializing the kind Person, with no need to specify again the nature of
functional complexes.

Figure 18 – Tonto VSCode extension showing a warning of the Redundant Natures validator

3.4.8 Other validators

Lastly, we defined other smaller validators to ensure code quality of the model:

• Class without more specific keywords: This validator shows a warning if an element
is declared using the keyword class and do not provide any nature.

• Check duplicates: This validator checks for duplicate names of class declarations,
relations, datatypes, and attributes.

• Check circular specialization: This validator checks whether an element with special-
izations does not have a cyclic specialization.

Chapter 3. Tonto: A textual syntax for modeling 52

3.4.9 Tonto CLI

To be able to expand the use of Tonto models, a desired feature is to export to another
format with external usage. Also, instead of recreating every model on another form from
scratch, being able to transform an existing model into the Tonto format is useful. That is the
purpose of the creation of Tonto CLI3, a Command Line Interface that enables Tonto projects
to be transformed into JSON files following an OntoUML JSON schema or to gUFO-based
OWL ontologies, to import a model from JSON to Tonto and to validate the model on the
ontouml-server API.

The CLI is a Node Package Manager (NPM) package and requires a proper installation of
node.js. Because of that, Tonto-CLI works on Windows, MacOS, and Linux and can be installed
as a global package, being able to call the command “tonto-cli” from any folder in a terminal.
The following commands are available:

• Generate, used with tonto-cli generate [directoryName], which transforms a
model in the provided directory to JSON.

• Import, used with tonto-cli import [jsonFileName], which imports a JSON file
as provided by input and generates a Tonto project from it.

• Transform, used with tonto-cli transform [directoryName], which transforms
the model provided to a gUFO-based OWL ontology using the Turtle syntax.

• Validate, used with tonto-cli validate [directoryName], which sends the model
to the ontouml-server API and returns every validation error provided.

3.5 Tonto Package Manager

With Langium and VSCode Extension, it is possible to create powerful Tonto projects
with many files and packages, allowing the definition of large models. However, a great way
developed in popular programming languages is the possibility to encapsulate code as a package
to be distributed and reused on other projects, some of them being open-source, with its source
code available for everyone. This was one of the reasons for the increasing development speed
in many companies doing software development. Tonto Package Manager (TPM)4 was created
to provide the same capabilities for Tonto. TPM is based on popular solutions, for example,
NPM (Node Package Manager)5, SPM (Swift Package Manager)6 and Cargo 7, the package
managers for JavaScript, Swift, and Rust, respectively.
3 <https://www.npmjs.com/package/tonto-cli>
4 <https://www.npmjs.com/package/tonto-package-manager>
5 <https://www.npmjs.com/>
6 <https://www.swift.org/package-manager/>
7 <https://doc.rust-lang.org/cargo/>

https://www.npmjs.com/package/tonto-cli
https://www.npmjs.com/package/tonto-package-manager
https://www.npmjs.com/
https://www.swift.org/package-manager/
https://doc.rust-lang.org/cargo/

Chapter 3. Tonto: A textual syntax for modeling 53

As a consequence of Package Managers being complex projects requiring a lot of effort
to build every function, some decisions were made to simplify this task in our context. First,
every project must be hosted on a git repository, with the possibility of defining a directory that
the package is relative to the root folder, a version tag published on the repository, or a branch in
case it is different from the main branch. Also, no lock file is created to manage current versions
installed of dependencies, unlike the mentioned package manager npm. Because there is no
complex code compilation, this file is not required in Tonto. Finally, every Tonto dependency is
downloaded to a folder named tonto_dependencies that must not be uploaded to code versioning
tools like git.

3.5.1 Manifest File

In order to be able to identify a project and its dependencies, a package manifest file is
needed to be defined. A package manifest file is a file containing every piece of information
required to make it complete and to distribute it for other projects to use. In Tonto, the manifest
file must be named tonto.json and is defined in a JSON format with a correct definition of
key-value properties. Listing 3.13 provides an example of a manifest file for the University
Example. One possibility of dependency defined is for the CoreDatatypes package, defined on
Listing 3.2, which could be a separate package.

Listing 3.13 – Example of a package manifest file for Tonto University example.

1 {
2 "projectName ": "UniversityModel",
3 "displayName ": "University Model",
4 "authors ": [" Matheus Lenke Coutinho"],
5 "license ": "MIT",
6 "version ": "1.0.0" ,
7 "publisher ": "UFES",
8 "dependencies ": {
9 "CoreDataTypes ": {
10 "url": "https:github.com/url -to-package",
11 "directory ": "path/to/package"
12 }
13 },
14 "outFolder ": "out"
15 }

To download dependencies there are two possibilities. The first is by installing TPM as
a global CLI in the same way that tonto-cli is installed. After doing that, it is only needed to
run the command tpm install in the same directory as the tonto.json file of the project. The
other option is to use the command button at the bottom of the extension, as shown by Figure 7,
or at the command palette. After executing successfully, every dependency will be downloaded

Chapter 3. Tonto: A textual syntax for modeling 54

to a temporary folder, processed by tpm, and moved correctly to the tonto_dependencies
folder. All dependencies are downloaded recursively, so they can also be Tonto projects with
their dependencies. Figure 19 shows an example of a TPM message that dependencies were
installed successfully.

Figure 19 – Tonto VSCode extension showing TPM message that dependencies were installed
successfully.

3.6 How to use Tonto

In order to use Tonto, the VS Code extension can be downloaded from the marketplace
(<https://marketplace.visualstudio.com/items?itemName=Lenke.tonto>). In order to create
a project, there is a getting started tutorial on <https://github.com/matheuslenke/Tonto>
that can be followed to understand more about how Tonto works. Every functionality is
already available at the VS Code extension, but if a CLI is needed, Tonto-CLI <https://www.
npmjs.com/package/tonto-cli> and Tonto PackageManager <https://www.npmjs.com/package/
tonto-package-manager> can both be installed globally via NPM.

https://marketplace.visualstudio.com/items?itemName=Lenke.tonto
https://github.com/matheuslenke/Tonto
https://www.npmjs.com/package/tonto-cli
https://www.npmjs.com/package/tonto-cli
https://www.npmjs.com/package/tonto-package-manager
https://www.npmjs.com/package/tonto-package-manager

55

4 An Example of Tonto Model: Library

In this chapter, we will experiment with features of Tonto tools in a complex model to
evaluate its performance and capabilities. The selected model is the Library Ontology model1,
selected from a catalog of OntoUML models created by third parties over the years. It describes
a library system, containing elements about collections of materials like videotapes and books
and copies of these items provided to students and professors. It describes the student’s and
employee’s ability to borrowmaterials from these collections, and what roles are played by these
students. It also describes the contracts that students and employees have with a university.
Appendix D contains the diagrams of this model. Figure 25 shows the original university
diagram in OntoUML.

At first, the model is imported from JSON to Tonto, where some validations are made in
order to check how information is transformed. Then, we export again the model from Tonto to
JSON and to gUFO-based OWL, in order to evaluate if any information is lost. Lastly, JSON files
and the Visual Paradigm Plugin concerning versioning the model will be evaluated in order to
analyze the efficiency of each approach. Figure 20 shows a flowchart diagram representing this
process of manipulating OntoUML models between Visual Paradigm, JSON, and Tonto that
was made in this experiment.

4.1 Importing Model to Tonto

This model is also available as a JSON resource following OntoUML JSON schema2.
Because Tonto allows importing models using this format, we can use Tonto CLI to do most
of the work of creating it. The result of this import command can be seen in appendix C. It is
important to note that the import command does not guarantee that the generated model will
be equivalent to the source model, as not every element from OntoUML is already implemented
in Tonto, or it is not mapped in the CLI import function. One example is the lack of support for
the link between a relator and a material relation that is grounded on the relator.

After importing, because Tonto cannot represent declaration names with complex
strings containing special characters and whitespaces, every whitespace is replaced by an
underscore. Tonto does not allow duplicated element names on the same package, and a
problem occurs with the element Employee_Loan on this model. In OntoUML, we have both a
≪role≫ and a ≪relator≫ with the same name in the same package, which is not allowed in
Tonto. Because of Tonto validators, this error will instantly show on the problems tab using
the VS Code extension, allowing the user to inspect duplicated names and modify them. We
1 <https://scs-ontouml.eemcs.utwente.nl/model/c26c4ec3-c554-4988-9b19-581855aa4646>
2 <https://scs-ontouml.eemcs.utwente.nl/distribution/74d94cee-b9f6-4f92-948c-e95ba4001530>

https://scs-ontouml.eemcs.utwente.nl/model/c26c4ec3-c554-4988-9b19-581855aa4646
https://scs-ontouml.eemcs.utwente.nl/distribution/74d94cee-b9f6-4f92-948c-e95ba4001530

Chapter 4. An Example of Tonto Model: Library 56

Figure 20 – Flowchart diagram showing the process of importing, exporting and validating a
Tonto model.

then changed the name of the role element to Employee_Loan_Role. Another detail is that every
cardinality was explicitly created for every relation as [1], however, that is the default value
and does not need to be stated. The original name of the library package is ‘Diagram1’, and
due to this name not expressing exactly the meaning of this package, its name was changed to
‘Library’. With that, we can conclude that almost every element present in the original resource
was created in Tonto, with some minor changes required. The only missing property is the
link between the relator Employee Contract and the material relation because Tonto does not
support it.

4.2 Validating the Tonto Model

Then, we can experiment with the validation method of the extension, to compare the
returned errors from the ontouml-server API to what errors the extension is showing. After
executing the command, we have as a result 14 validation errors, with the first two errors
presented on Listing 4.1. Only two kinds of error are returned: (i) is an error about sortal
classes needing to specialize a unique ultimate sortal and (ii) is an error about the missing
tagged value of ‘restrictedTo’ in a class. Both of them are related to the role Items_Copy (from

Chapter 4. An Example of Tonto Model: Library 57

the original Item’s Copy name). The simplified result from the original model on the Visual
paradigm validator is on Listing 4.2, demonstrating the same validation errors. Every error is
identical between tools.

Listing 4.1 – Example of validation output from Visual Paradigm
1 ERROR: Every sortal class must specialize a unique ultimate sortal. The

class Item 's Copy must specialize (directly or indirectly) a unique
class decorated as one of the following: kind , collective , quantity ,
relator , quality , mode

2 ERROR: The meta -property 'restrictedTo ' is not assigned. The meta -
property 'restrictedTo ' of class Item 's Copy must specify the
possible ontological natures of its instances

Listing 4.2 – Example of validation output from Tonto validation command.
1 [error] Every sortal class must specialize a unique ultimate sortal:
2 The class Items_Copy must specialize (directly or indirectly) a unique

class decorated as one of the following: <<kind >>, <<collective >>, <<
quantity >>, <<relator >>, <<quality >>, <<mode >>

3 [error] The meta -property 'restrictedTo ' is not assigned:
4 The meta -property 'restrictedTo ' of class Items_Copy must specify the

possible ontological natures of its instances

4.3 Exporting the Model

Now, we take the opposite path in order to evaluate the quality of transformations. We
recreate the same diagram exporting the Library package to JSON, and then importing this
JSON into the Visual Paradigm OntoUML plugin. After exporting to JSON, the file has 3335
lines because of the verbose syntax of JSON. The original JSON file of this model has 5209
files due to having information about the diagrams of this model, and this information is not
generated by Tonto. The result of the process of importing it to Visual Paradigm is shown in
Figure 26. Because Tonto lack of information about diagrams, it is necessary to adjust the layout
in order to look similar to the original. This is a disadvantage at the moment, not allowing
Tonto to save diagrams. Comparing them, there are only two differences: the names that were
adjusted replacing whitespaces, and the lack of the link between the relator Employee Contract
and a material relation that is grounded on the relator.

On Listing 4.3 there is a small part of the transformation of the Library model in Tonto
to gUFO-based OWL. However, it was impossible to generate this model without modifying it,
because ontouml-server API does not allow the transformation of models with semantic errors.
Then, every class missing specialization of an ultimate sortal and nature definition needed to
be fixed first. As a consequence of this format being really verbose, the generated model is too
extensive and we need to omit information. The original generated file has 759 lines, being

Chapter 4. An Example of Tonto Model: Library 58

larger than the Tonto version with 148 lines on the main package. We can verify that every
element presented is created correctly by evaluating the generated file.

4.4 Analyzing Version Control

This section presents how version control is dealt with in Tonto, JSON files and Visual
Paradigm, considering the use of the tool git. In order to test that, we add a new role called
AssistantProfessor that specializes the existing role Professor. At first, we have Figure 21 con-
taining the difference in code after adding that role in Tonto. On the right, we have the result
of the git command to analyze differences in a versioned file , showing that the Tonto file only
had 1 insertion in 1 line.

Figure 21 – VSCode showing the differences in Tonto file after adding the roleAssistantProfessor.

We can compare the differences in a JSON file using the transformation from Tonto
to JSON before the addition of AssistantProfessor (i) and after adding it (ii). Figure 22 shows
the difference between (i) and (ii) in VS Code git difference explorer. The file on the right, in
green, shows the inclusion of the AssistantProfessor and every other property related to it,
based on ontouml JSON schema. From the left, we can visualize that we have 367 insertions
and 316 deletions. The majority of the modifications are ids that were randomly generated
again, however, even considering only the insertion of a new class and its specialization, we can
verify that it changes more lines than in Tonto. In that way, a modeler can verify information
faster when looking at a model in Tonto.

Chapter 4. An Example of Tonto Model: Library 59

Listing 4.3 – Slice of a gUFO-based OWL file transformed from a Tonto Model

1 @prefix : <https://example.com#>.
2 @prefix gufo: <http://purl.org/nemo/gufo#>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
5 @prefix owl: <http://www.w3.org/2002/07/owl#>.
6 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
7

8 <https://example.com> rdf:type owl:Ontology;
9 owl:imports gufo:.
10 :Reserved_Copy rdf:type owl:Class, gufo:Kind, owl:NamedIndividual;
11 rdfs:subClassOf gufo:Relator;
12 rdfs:label "Reserved_Copy"@en.
13 :Renewed_Copy rdf:type owl:Class, gufo:Kind, owl:NamedIndividual;
14 rdfs:subClassOf gufo:Relator;
15 rdfs:label "Renewed_Copy"@en.
16 :Get_Copy rdf:type owl:Class, gufo:Kind, owl:NamedIndividual;
17 rdfs:subClassOf gufo:Relator;
18 rdfs:label "Get_Copy"@en.
19 :Item rdf:type owl:Class, gufo:Kind, owl:NamedIndividual;
20 rdfs:subClassOf gufo:FunctionalComplex;
21 rdfs:label "Item"@en.
22 :Items_Copy rdf:type owl:Class, gufo:Role, owl:NamedIndividual;
23 rdfs:label "Items_Copy"@en.
24 :Work rdf:type owl:Class, gufo:Kind, owl:NamedIndividual;
25 rdfs:subClassOf gufo:FunctionalComplex;
26 rdfs:label "Work"@en.
27 :Videotape rdf:type owl:Class, gufo:SubKind, owl:NamedIndividual;
28 rdfs:label "Videotape"@en.
29 :Periodical rdf:type owl:Class, gufo:SubKind, owl:NamedIndividual;
30 rdfs:label "Periodical"@en.
31 :Book rdf:type owl:Class, gufo:SubKind, owl:NamedIndividual;
32 rdfs:label "Book"@en.
33 :Dvd rdf:type owl:Class, gufo:SubKind, owl:NamedIndividual;
34 rdfs:label "Dvd"@en.
35 :Collection rdf:type owl:Class, gufo:Kind, owl:NamedIndividual;
36 rdfs:subClassOf gufo:VariableCollection;
37 rdfs:label "Collection"@en.
38 :Copy rdf:type owl:Class, gufo:Kind, owl:NamedIndividual;
39 rdfs:subClassOf gufo:FunctionalComplex;
40 rdfs:label "Copy"@en.
41 :Copy_Reservation rdf:type owl:Class, gufo:Role, owl:NamedIndividual;
42 rdfs:label "Copy_Reservation"@en.
43 :Student_Loan rdf:type owl:Class, gufo:Kind, owl:NamedIndividual;
44 rdfs:subClassOf gufo:Relator;
45 rdfs:label "Student_Loan"@en.

Chapter 4. An Example of Tonto Model: Library 60

Figure 22 – VSCode showing the differences in a JSON file after adding the role AssistantPro-
fessor to the Tonto file and using the transformation command.

On the other hand, version control in Visual Paradigm files has more problems. In
Figure 23 we can verify that because .vpp files used by Visual Paradigm uses a specific format
only for its tool, git cannot analyse its contents. In that way, its impossible to enable version
control in it with git. However, Visual Paradigm has its own built-in approach to manage
differences between models and diagrams. Because we cannot apply any other textual tool,
this approach does not enable the same possibilities as Tonto and JSON files.

Chapter 4. An Example of Tonto Model: Library 61

Figure 23 – VSCode showing that changes in a Visual Paradigm model and diagram cannot be
versioned by git.

One possibility to version Visual Paradigm projects is using JSON files generated
by the OntoUML plugin. Because ontouml-schema for JSON files holds information on the
position of every element in the diagram, it’s possible to deal with this versioning by importing
and exporting JSON files. However, this approach also has some disadvantages, taking into
consideration that every modification will generate changes in multiple lines of the JSON file.
In files with thousands of lines, this can be confusing for someone to analyze and approve these
changes. Figure 24 shows an example of the samemodification, adding the roleAssistantProfessor
specializing Professor and then generating the JSON file from the modified version. Making
some small adjustments in elements positions already generate many changes, as shown by the
example, showing 1200 inserted lines and 1127 deletions. With a lot of non-structured changes
from generated code, it is hard to deal for example with merge conflicts, a common necessity
of projects with more than one developer. Considering that changes in a model could modify
way more than one element, this approach is not as practical as Tonto.

Chapter 4. An Example of Tonto Model: Library 62

Figure 24 – VSCode showing changes in a JSON file generated by a modified diagram in Visual
Paradigm.

63

5 Conclusion

In the following sections, the final considerations of this work will be presented, address-
ing its main contributions and the challenges encountered (Section 5.1). Then, some lessons
learned with the tools used will be discussed (Section 5.2). Additionally, some suggestions for
future work will be provided, aiming to bring new contributions to the accomplished project
(Section 5.3).

5.1 Final Considerations

In this work, we have presented the foundation of Ontology-driven Conceptual Model-
ing and the OntoUML Language built as a UML extension based on the Unified Foundational
Ontology (UFO). We observed in the literature the relevance of this theme and different ap-
proaches to enabling conceptual modeling for computer and information science fields. Some
of these presented works have a textual syntax to represent ontology-based models, like OWL.
This served as a theoretical basis for developing the language Tonto and all tools related to it:
Tonto CLI, Tonto VS Code extension, and Tonto Package Manager. The main goal of this work
was to create a textual syntax to enable the representation of OntoUML elements, focusing
on developer experience with the VS Code extension and allowing transformation into other
formats, e.g. gUFO-based OWL and JSON. Also, it allows modularization of projects, aiming to
increase language use and better code organization.

After that, we presented the advantages of having a textual syntax and how it can
benefit the development and maintainability of models, such as having better version control
with git tools, making it easier to compare different versions of the same model, and being able
to merge updates on a model easily.

With Tonto CLI, we showed how models created with Tonto could connect with already
consolidated tools like ontouml-server, gUFO-based OWL, and OntoUML JSON representation
that can be imported to the Visual Paradigm plugin.

With Tonto VS Code extension, users can utilize every feature of Tonto grammar
powered by modern programming language features like smart code completion, jump-to-
definition functions, error visualization, and commands easily accessed with buttons at the
bottom bar.

With Tonto Package Manager, every Tonto project can take advantage of code reuse,
enabling the development of foundational models for different areas that can be referenced in
any project.

Lastly, we experimented Tonto toolkit on an existing model with a high amount of

Chapter 5. Conclusion 64

elements, addressing differences between versioning control on all approaches. In conclusion,
Tonto has a simpler way of changing the definition of models, allowing better readability and
fewer conflicts on merging tools. In addition to that, it facilitates the scalability of projects,
being able to represent many elements in an organized way without losing readability, and
allowing code reuse with TPM.

However, textual syntaxes have some limitations, such as the lack of a more visual
interface. The importance of these limitations is reduced when you consider all the features that
can be integrated into textual environments to facilitate model development and visualization.
Also, with the possibility of transformation between textual syntax and diagrams, we could
have the advantages of all situations.

Finally, the development of this work required the knowledge acquired during years of
study in the Computer Science course at UFES (Federal University of Espírito Santo), including,
but not limited, to the knowledge of: object-oriented programming, programming languages
and deep knowledge of parsers and compilers, web development, data structures, algorithms,
software engineering and domain engineering. During this course, I was able to learn and
practice each one of these topics, being able to masterfully project and create software. All this
knowledge was essential to make the creation of Tonto possible, together with the theoretical
foundation of ontology-based conceptual modeling.

5.2 Lessons Learned

One of the biggest challenges of building Tontowas dealingwith Langium. Like a double-
edged sword, Langium has many benefits and disadvantages associated with it. The first benefit
is getting an out-of-the-box implementation of AST elements for every element of a defined
grammar, with a generated LSP that allows the usage of this grammar in a VSCode extension.
The second benefit is getting a basic implementation of a VS Code extension, allowing the usage
of this grammar with code completion, basic syntax highlighting, the possibility of defining
validators that run on each element of the grammar, and scope and cross-reference calculations
already implemented. With pre-defined services, Langium allows the personalization of every
functionality described above by the usage of the inheritance concept from Object-Oriented
Programming, allowing many changes.

However, getting a lot of implementations at the beginning can make it more difficult
to personalize when trying to do something more specific. One example was the challenge of
implementing scope computation based on the imports of a project because Langium auto-
matically considers every element in every file globally. Also, when implementing validators,
because Tonto allows the specification of generalizations both directly on an element and with
generalization sets, some validators needed to be created by scratch using validators at the top
level of the model definition, creating more complexity. The last problem was dealing with

Chapter 5. Conclusion 65

Langium updates during the development of this project. Because Langium was released in
2021, it had many breaking changes since then, improving core features and creating the need
for refactoring code in order to update. This allowed Tonto to be more powerful as new features
were added while creating a lot of rework in order to update. This was a natural consequence
of early adoption.

Finally, the benefits of using Langium certainly outweigh the harms. Without it, all the
processes of creating an AST from a Grammar and adding every functionality to it would be
needed to be done by hand, and with time being a limiting factor, this project would not reach
its current state without this library.

5.3 Future Work

• Add more functions to Tonto Package Manager: In its current state, the package
manager recursively searches for inner dependencies of the dependencies on tonto.json
manifest every time it makes an install. In order to optimize this process, it should be
done only when necessary. One way of caching it is creating a lock file that will be created
on the first install and updated after dependencies change. This file contains information
about all the required dependencies and URLs, so it is easier to download them without
recursively searching for every dependency.

• Add a way to generate diagrams with Tonto: One of the biggest problems of textual
syntaxes is losing the advantage of visualizing every element of a model and its relation
easily on the screen. With a tool that creates diagrams based on Tonto elements and
code annotations on comments in these elements, we could have the advantages of both
worlds. The idea is not to force the definition of diagram information in every Tonto
model, but allowing the user to decide between declaring diagram information or not
without losing agility in development.

• Improve the compatibility of transformations: On its current state, Tonto CLI does
not allow 100% of elements from other formats to be converted into Tonto. One possibility
is to ensure every element from OntoUML JSON format is created when importing it to
Tonto and in the opposite direction.

• Increse unit test coverage: Unit tests are a great way of guaranteeing code quality and
maintainability. Tonto grammar and validators already have great coverage of unit tests,
but that can be increased on transformation functionalities.

• Update project to ESM Modules: ESM Modules (EcmaScript Modules) are the new
official standard format to package JavaScript code for reuse, utilizing import and export
syntax. The support for it is increasing and when a library supports it, this project need to
support it as well. One of the features on the Langium 2.0 roadmap is to move completely

Chapter 5. Conclusion 66

to ESM, and that change would need to be done on Tonto in order to follow Langium
updates.

• Experiment the Tonto framework: In order to evaluate more of Tonto capabilities,
a good experiment would be to process a large number of OntoUML models presently
available in JSON serialization. These models should be transformed into Tonto and
evaluated for the number of elements that were correctly translated. This would also
allow a comparison into how Tonto validators performwhen contrasted with the ontouml-
server validation API. Lastly, one could also evaluate the Tonto to JSON transformation.

67

Bibliography

ALMEIDA, J. P. A.; FALBO, R. A.; GUIZZARDI, G. Events as entities in ontology-driven
conceptual modeling. In: . Cham: Springer, 2019. (LNCS, v. 11788), p. 469–483. Disponível em:
<https://dx.doi.org/10.1007/978-3-030-33223-5_39>. Cited 3 times on pages 9, 21, and 26.

ALMEIDA, J. P. A. et al. gUFO: A Lightweight Implementation of the Unified Foundational
Ontology (UFO). 2019. Disponível em: <http://purl.org/nemo/doc/gufo>. Cited on page 17.

ALMEIDA, J. P. A.; FONSECA, C. M.; CARVALHO, V. A. A comprehensive formal theory for
multi-level conceptual modeling. In: MAYR, H. C. et al. (Ed.). Conceptual Modeling. Cham:
Springer International Publishing, 2017. p. 280–294. ISBN 978-3-319-69904-2. Cited on page 27.

BENEVIDES, A. B. et al. Validating modal aspects of ontouml conceptual models using
automatically generated visual world structures. J. UCS, v. 16, p. 2904–2933, 2 2010. Cited on
page 14.

BRAGA, B. F. B. et al. Transforming ontouml into alloy: towards conceptual model validation
using a lightweight formal method. Innovations in Systems and Software Engineering, v. 6, p.
55–63, 2010. ISSN 1614-5054. Disponível em: <https://doi.org/10.1007/s11334-009-0120-5>.
Cited on page 14.

CAMBRIDGE. Cambridge Dictionary. 2023. Disponível em: <https://dictionary.cambridge.org/>.
Cited on page 19.

FONSECA, C. M. ML2: An Expressive Multi-Level Conceptual Modeling Language.
2017. M.Sc. thesis, Federal University of Espírito Santo, Brazil. Disponível em:
<https://dx.doi.org/10.13140/RG.2.2.16142.00327>. Cited 3 times on pages 17, 30, and 36.

FONSECA, C. M. et al. Incorporating types of types in ontology-driven conceptual modeling.
In: Conceptual Modeling - 41st International Conference, ER 2022, Hyderabad, India, October
17-20, 2022, Proceedings. Springer, 2022. (Lecture Notes in Computer Science, v. 13607), p. 18–34.
Disponível em: <https://doi.org/10.1007/978-3-031-17995-2_2>. Cited 2 times on pages 9
and 27.

FONSECA, C. M. et al. Ontology-driven conceptual modeling as a service. In:
JOWO 2021 The Joint Ontology Workshops. CEUR-WS, 2021. Disponível em: <https:
//ceur-ws.org/Vol-2969/paper29-FOMI.pdf>. Cited 3 times on pages 14, 17, and 28.

GUIDONI, G.; ALMEIDA, J.; GUIZZARDI, G. Transformation of ontology-based conceptual
models into relational schemas. In: 39th International Conference on Conceptual Modeling (ER
2020). [S.l.]: Springer, 2020. p. 315–330. ISBN 978-3-030-62522-1. Cited on page 14.

GUIZZARDI, G. Ontological foundations for structural conceptual models. Enschede, The
Netherlands: Centre for Telematics and Information Technology, 2005. ISBN 9075176813.
Cited 6 times on pages 14, 16, 19, 20, 21, and 22.

GUIZZARDI, G. et al. Ufo: Unified foundational ontology. Applied Ontology, IOS Press BV, v. 17,
p. 167–210, 2022. ISSN 18758533. Cited 9 times on pages 9, 14, 16, 20, 21, 22, 23, 24, and 25.

https://dx.doi.org/10.1007/978-3-030-33223-5_39
http://purl.org/nemo/doc/gufo
https://doi.org/10.1007/s11334-009-0120-5
https://dictionary.cambridge.org/
https://dx.doi.org/10.13140/RG.2.2.16142.00327
https://doi.org/10.1007/978-3-031-17995-2_2
https://ceur-ws.org/Vol-2969/paper29-FOMI.pdf
https://ceur-ws.org/Vol-2969/paper29-FOMI.pdf

Bibliography 68

GUIZZARDI, G. et al. Endurant types in ontology-driven conceptual modeling: Towards
ontouml 2.0. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, v. 11157 LNCS, p. 136–150,
2018. ISSN 16113349. Cited 4 times on pages 14, 21, 22, and 25.

GUIZZARDI, G. et al. Towards ontological foundations for the conceptual modeling
of events. In: International Conference on Conceptual Modeling (ER 2013). Springer,
2013. (Lecture Notes in Computer Science, v. 8217), p. 327–341. Disponível em:
<https://dx.doi.org/10.1007/978-3-642-41924-9_27>. Cited 3 times on pages 20, 21, and 26.

JACKSON, D. Software abstractions: Logic, Language, and Analysis. [S.l.]: MIT Press, 2016.
Cited on page 17.

MOREIRA, J. et al. Menthor editor: an ontology-driven conceptual modeling platform.
In: JOWO 2016 The Joint Ontology Workshops. [s.n.], 2016. Disponível em: <https:
//ceur-ws.org/Vol-1660/demo-paper1.pdf>. Cited on page 14.

OMG. OMG Unified Modeling Language (OMG UML) Version 2.5.1. 2017. Disponível em:
<http://www.omg.org/spec/UML/2.5.1>. Cited on page 14.

SALES, T. P.; GUIZZARDI, G. Ontological anti-patterns: Empirically uncovered error-prone
structures in ontology-driven conceptual models. Data & Knowledge Engineering, v. 99, 2 2015.
Cited on page 14.

W3C. OWL. 2012. Disponível em: <https://www.w3.org/OWL/>. Cited 2 times on pages 17
and 20.

W3C. Turtle. 2014. Disponível em: <https://www.w3.org/TR/turtle/>. Cited 2 times on pages
17 and 20.

https://dx.doi.org/10.1007/978-3-642-41924-9_27
https://ceur-ws.org/Vol-1660/demo-paper1.pdf
https://ceur-ws.org/Vol-1660/demo-paper1.pdf
http://www.omg.org/spec/UML/2.5.1
https://www.w3.org/OWL/
https://www.w3.org/TR/turtle/

Appendix

70

APPENDIX A – Tonto Grammar

This appendix presents a specification of Tonto concrete syntax in langium, using its
grammar similar to EBNF.

Listing A.1 – Tonto Grammar defined in Langium EBNF form.

1 grammar Tonto

2

3 Model:

4 imports += Import*

5 module=ContextModule;

6

7 ContextModule:

8 (isGlobal ?=’global ’)? ’package ’ (name=QualifiedName | name=

STRING)

9 declarations += Declaration *;

10

11 QualifiedName returns string:

12 ID (’.’ ID)*;

13

14 Import: ’import ’ referencedModel =[ContextModule:QualifiedName

] (’as’ packageAlias=ID)?;

15

16 Declaration: ClassDeclaration | AuxiliaryDeclaration;

17

18 AuxiliaryDeclaration: DataType | Enum | GeneralizationSetImpl

| ExternalRelation;

19

20 ClassDeclaration: classElementType=OntologicalCategory name=

QualifiedName ontologicalNatures=ElementOntologicalNature?

21 (’(’ ’instanceOf ’ instanceOf =[ClassDeclaration:

QualifiedName] ’)’)?

22 (’specializes ’ specializationEndurants +=[ClassDeclaration

:QualifiedName]

23 (’,’ specializationEndurants +=[ClassDeclaration:

QualifiedName])?

24)?

APPENDIX A. Tonto Grammar 71

25 (’{’ (attributes += Attribute | references +=

InternalRelation)*’}’)?;

26

27 OntologicalCategory: ontologicalCategory =(UnspecifiedType |

NonEndurantType | EndurantType);

28

29 UnspecifiedType returns string: ’class’;

30 NonEndurantType returns string: ’event’ | ’situation ’;

31 EndurantType returns string: NonSortal | UltimateSortal |

Sortal;

32 NonSortal returns string:

33 ’category ’ | ’mixin’ | ’phaseMixin ’ | ’roleMixin ’ | ’

historicalRoleMixin ’;

34 UltimateSortal returns string: ’kind’ | ’collective ’ | ’

quantity ’ | ’quality ’ | ’mode’ | ’intrinsicMode ’ | ’

extrinsicMode ’ | ’relator ’ | ’type’ | ’powertype ’;

35 Sortal returns string: ’subkind ’ | ’phase’ | ’role’ | ’

historicalRole ’;

36

37 ElementOntologicalNature: ’of’ natures += OntologicalNature (’,

’ natures += OntologicalNature)*;

38

39 OntologicalNature returns string: ’objects ’ | ’functional -

complexes ’ | ’collectives ’ | ’quantities ’ |

40 ’relators ’ | ’intrinsic -modes ’ | ’extrinsic -modes’ | ’

qualities ’ |

41 ’events ’ | ’situations ’ | ’types ’ | ’abstract -

individuals ’;

42

43 ElementRelation: InternalRelation | ExternalRelation;

44

45 InternalRelation infers ElementRelation:

46 (’@’relationType=RelationStereotype)?

47 (

48 ’(’

49 (’{’ metaAttributes += RelationMetaAttribute

50 (’,’ metaAttributes += RelationMetaAttribute)* ’}’)?

51 (firstEndName=ID)?

52 ’)’

APPENDIX A. Tonto Grammar 72

53)?

54 firstCardinality=Cardinality?

55 (isAssociation ?=’--’ | isAggregation ?=’<>--’ | isComposition

?=’<o>--’) (name=QualifiedName ’--’)?

56 secondCardinality=Cardinality?

57 (

58 ’(’

59 (’{’ secondEndMetaAttributes += RelationMetaAttribute

60 (’,’ secondEndMetaAttributes += RelationMetaAttribute)

* ’}’)?

61 (secondEndName=ID)?

62 ’)’

63)?

64 secondEnd =[ClassDeclaration:ID]

65 (’specializes ’ specializeRelation =[ElementRelation:

QualifiedName])?

66 (hasInverse=’inverseOf ’ inverseEnd =[ElementRelation:

QualifiedName])?;

67

68 ExternalRelation infers ElementRelation:

69 (’@’relationType=RelationStereotype)?

70 ’relation ’

71 firstEnd =[ClassDeclaration:QualifiedName]

72 (

73 ’(’

74 (’{’ firstEndMetaAttributes += RelationMetaAttribute

75 (’,’ firstEndMetaAttributes += RelationMetaAttribute)* ’}’

)?

76 (firstEndName=ID)?

77 ’)’

78)?

79

80 firstCardinality=Cardinality?

81 (isAssociation ?=’--’ | isComposition ?=’<>--’ |

isComposition ?=’<o>--’) (name=QualifiedName ’--’)?

82

83 secondCardinality=Cardinality?

84 (

85 ’(’

APPENDIX A. Tonto Grammar 73

86 (’{’ secondEndMetaAttributes += RelationMetaAttribute

87 (’,’ secondEndMetaAttributes += RelationMetaAttribute)*

’}’)?

88 (secondEndName=ID)?

89 ’)’

90)?

91

92 secondEnd =[ClassDeclaration:ID]

93 (’specializes ’ specializeRelation =[ElementRelation:

QualifiedName])?

94 (hasInverse=’inverseOf ’ inverseEnd =[ElementRelation:

QualifiedName])?

95 ;

96

97 Attribute:

98 name=ID ’:’ attributeTypeRef =[DataType:QualifiedName]

99 cardinality=Cardinality?

100 (’{’((isOrdered ?=’ordered ’) & (isConst ?=’const’) & (

isDerived ?=’derived ’))? ’}’)?;

101

102 RelationMetaAttribute:

103 isOrdered ?=’ordered ’ | isConst ?=’const’ | isDerived ?=’

derived ’ |

104 (’subsets ’ subsetRelation =[ElementRelation:QualifiedName])

|

105 (’redefines ’ redefinesRelation =[ElementRelation:

QualifiedName]);

106

107 RelationStereotype returns string:

108 ’material ’ |

109 ’derivation ’ |

110 ’comparative ’ |

111 ’mediation ’ |

112 ’characterization ’ |

113 ’externalDependence ’ |

114 ’componentOf ’ |

115 ’memberOf ’ |

116 ’subCollectionOf ’ |

117 ’subQuantityOf ’ |

APPENDIX A. Tonto Grammar 74

118 ’instantiation ’ |

119 ’termination ’ |

120 ’participational ’ |

121 ’participation ’ |

122 ’historicalDependence ’ |

123 ’creation ’ |

124 ’manifestation ’ |

125 ’bringsAbout ’ |

126 ’triggers ’ |

127 ’composition ’ |

128 ’aggregation ’ |

129 ’inherence ’ |

130 ’value’ |

131 ’formal ’;

132

133 Cardinality:

134 ’[’ lowerBound =(INT | ’*’)

135 (’..’ upperBound =(INT | ’*’))? ’]’;

136

137 GeneralizationSet:

138 (disjoint ?=’disjoint ’)? (complete ?=’complete ’)?

139 ’genset ’ name=ID ’{’

140 (

141 ’general ’ generalItem =[ClassDeclarationOrRelation:

QualifiedName]

142 (’categorizer ’ categorizerItems +=[

ClassDeclarationOrRelation:QualifiedName])?

143 ’specifics ’ specificItems +=[

ClassDeclarationOrRelation:QualifiedName]

144 (’,’ specificItems +=[ClassDeclarationOrRelation:

QualifiedName])*

145)

146 ’}’;

147

148 GeneralizationSetShort returns GeneralizationSet:

149 (disjoint ?=’disjoint ’)? (complete ?=’complete ’)?

150 ’genset ’ name=ID ’where ’

151 specificItems +=[ClassDeclarationOrRelation:QualifiedName]

(’,’ specificItems +=[ClassDeclarationOrRelation:

APPENDIX A. Tonto Grammar 75

QualifiedName])*

152 ’specializes ’ generalItem =[ClassDeclarationOrRelation:

QualifiedName]

153 ;

154

155 type ClassDeclarationOrRelation = ClassDeclaration |

ElementRelation;

156

157 // <--- DataTypes --->

158 type DataTypeOrClass = DataType | ClassDeclaration;

159

160 DataType:

161 ’datatype ’ name=ID ontologicalNature=

ElementOntologicalNature?

162 (’specializes ’ specializationEndurants +=[DataTypeOrClass:

QualifiedName]

163 (’,’ specializationEndurants +=[DataTypeOrClass:

QualifiedName])?

164)?

165 (’{’

166 (attributes += Attribute)*

167 ’}’)?;

168

169 // <--- Enums --->

170 Enum infers DataType:

171 isEnum ?=’enum’ name=ID

172 (’specializes ’ specializationEndurants +=[DataTypeOrClass:

QualifiedName]

173 (’,’ specializationEndurants +=[DataTypeOrClass:

QualifiedName])?

174)?

175 ’{’

176 (elements += EnumElement

177 ((’,’) elements += EnumElement)*)?

178 ’}’;

179

180 EnumElement: name=ID;

181

182 hidden terminal WS: /\s+/;

APPENDIX A. Tonto Grammar 76

183 terminal ID: /[_a-zA-Z][\w_]*/;

184 terminal INT returns number: /[0 -9]+/;

185 terminal STRING: /"[^"]*"|’[^’]*’/;

186

187 hidden terminal ML_COMMENT: /\/*[\s\S]*?*\//;

188 hidden terminal SL_COMMENT: /\/\/[^\n\r]*/;

77

APPENDIX B – University model in Tonto

This appendix presents the University model in Tonto

Listing B.1 – University package from University model in Tonto.

1 import CoreDatatypes

2 import PersonPhases

3 package University

4

5 category Organization

6

7 kind University specializes Organization {

8 address: Address

9 @componentOf

10 [1] <>-- has -- [1..*] Department

11 }

12

13 kind Department {

14 name: string

15 @componentOf

16 [1] <>-- [1] JuniorStaff

17 @componentOf

18 [1] <>-- [1] SeniorStaff

19 }

20

21 collective Staff {

22 [1] <o>-- hasMember -- [0..*] Employee

23 }

24

25 subkind JuniorStaff specializes Staff

26 subkind SeniorStaff specializes Staff

27

28 roleMixin Employer

29

30 role UniversityEmployer specializes Employer , University

31

32 relator EmploymentContract {

33 @mediation

APPENDIX B. University model in Tonto 78

34 [1..*] -- [1] Employee

35 @mediation

36 [1..*] -- [1] Employer

37 }

Listing B.2 – PersonPhases package from University model in Tonto.

1 import CoreDatatypes

2 import University

3

4 package PersonPhases

5

6 kind Person {

7 name: string [1..*]

8 age: number [1]

9 birthDate: date [1] { const }

10 eyeColor: EyeColor [1..*]

11 phoneNumber: CoreDatatypes.PhoneNumber [0..*]

12 }

13

14 type PersonTypeByAge

15

16 phase Child (instanceOf PersonTypeByAge)

17 phase Teenager (instanceOf PersonTypeByAge)

18 phase Adult (instanceOf PersonTypeByAge)

19

20 genset PhasesOfPerson {

21 general Person

22 categorizer PersonTypeByAge

23 specifics Child , Teenager , Adult

24 }

25

26 role UniversityStudent specializes Person

27 role FormerStudent specializes UniversityStudent

28 role ActiveStudent specializes UniversityStudent

29

30 role Employee specializes Person

31 role UniversityProfessor specializes Employee

79

APPENDIX C – Library model in Tonto

This appendix presents the Library model transformed from JSON to Tonto with a few
changes

Listing C.1 – Library model in Tonto.

1 package Library

2

3 relator Reserved_Copy {

4 @mediation

5 [1] -- [1] ({const }) Item

6 @mediation

7 [1] -- [1] ({const }) Copy

8 }

9 relator Renewed_Copy {

10 @mediation

11 [1] -- [1] ({const }) Item

12 @mediation

13 [1] -- [1] ({const }) Copy

14 }

15 relator Get_Copy {

16 @mediation

17 [1] -- [1] ({const }) Item

18 @mediation

19 [1] -- [1] ({const }) Items_Copy

20 }

21 kind Item {

22 @formal

23 [1] -- [1] Work

24 }

25 role Items_Copy {

26 @mediation

27 [1] -- [1] ({const }) Copy

28 }

29 kind Work

30 subkind Videotape specializes Work{

31 @memberOf

32 [1] --<o> [1] Collection

APPENDIX C. Library model in Tonto 80

33 }

34 subkind Periodical specializes Work{

35 @memberOf

36 [1] --<o> [1] Collection

37 }

38 subkind Book specializes Work{

39 @memberOf

40 [1] --<o> [1] Collection

41 }

42 subkind Dvd specializes Work{

43 @memberOf

44 [1] --<o> [1] Collection

45 }

46 collective Collection

47 kind Copy {

48 @mediation

49 [1] -- [1] ({const }) Copy_Reservation

50 @mediation

51 [1] -- [1] ({const }) Renew_Copy

52 @mediation

53 [1] -- [1] ({const }) Reserve_Copy_for_Employee

54 @mediation

55 [1] -- [1] ({const }) Employee_Loan_Role

56 @mediation

57 [1] -- [1] ({const }) Renew_Copy_for_Employee

58 }

59 role Copy_Reservation {

60 @mediation

61 [1] -- [1] ({const }) Make_Reservation_for_Student

62 }

63 relator Student_Loan {

64 @mediation

65 [1] -- [1] ({const }) Copy

66 @mediation

67 [1] -- [1] ({const }) Delay

68 @mediation

69 [1] -- [1] ({const }) Student

70 }

71 role Delay {

APPENDIX C. Library model in Tonto 81

72 @mediation

73 [1] -- [1] ({const }) Generate_Student_Delay

74 }

75 relator Make_Reservation_for_Student {

76 @mediation

77 [1] -- [1] ({const }) Student

78 }

79 relator Renew_Copy_for_Student {

80 @mediation

81 [1] -- [1] ({const }) Copy

82 @mediation

83 [1] -- [1] ({const }) Student

84 }

85 role Renew_Copy {

86 @mediation

87 [1] -- [1] ({const }) Student

88 }

89 role Student specializes Person

90 relator Generate_Student_Delay {

91 @mediation

92 [1] -- [1] ({const }) Return_Deadline

93 @mediation

94 [1] -- [1] ({const }) Student

95 }

96 kind Return_Deadline {

97 [*] -- [*] Fine

98 }

99 kind Fine

100 phase Daily specializes Fine

101 phase Monthly specializes Fine

102 role Undergraduate_Student specializes Student{

103 @mediation

104 ({const })[1] -- [1] ({const })

Undergraduate_Contract

105 }

106 role Graduate_Student specializes Student{

107 @mediation

108 ({const })[1] -- [1] ({const }) Graduate_Contract

109 }

APPENDIX C. Library model in Tonto 82

110 relator Undergraduate_Contract {

111 @mediation

112 [1] -- [1] ({const }) UNISAM

113 }

114 relator Graduate_Contract {

115 @mediation

116 [1] -- [1] ({const }) UNISAM

117 }

118 kind UNISAM

119 kind Person

120 role Employee specializes Person

121 role Administrative specializes Employee

122 role Professor specializes Employee

123 role Regular specializes Administrative{

124 @material

125 [1] -- [1] Intern

126 }

127 role Intern specializes Administrative

128 relator Employee_Contract {

129 @mediation

130 [1] -- [1] ({const }) Regular

131 @mediation

132 [1] -- [1] ({const }) Intern

133 }

134 relator Professor_Contract {

135 @mediation

136 [1] -- [1] ({const }) UNISAM

137 @mediation

138 [1] -- [1] ({const }) Professor

139 }

140 relator Employee_Loan {

141 @mediation

142 [1] -- [1] ({const }) Employee

143 }

144 relator Renew_Employee {

145 @mediation

146 [1] -- [1] ({const }) Employee

147 }

148 relator Make_Reservation_for_Employee {

APPENDIX C. Library model in Tonto 83

149 @mediation

150 [1] -- [1] ({const }) Employee

151 }

152 role Renew_Copy_for_Employee {

153 @mediation

154 [1] -- [1] ({const }) Renew_Employee

155 }

156 role Reserve_Copy_for_Employee {

157 @mediation

158 [1] -- [1] ({const }) Make_Reservation_for_Employee

159 }

160 role Employee_Loan_Role {

161 @mediation

162 [1] -- [1] ({const }) Employee_Loan

163 }

84

APPENDIX D – Library model diagrams

This appendix presents the Library model diagrams. First, the file from the original
model, and then the model generated by exporting from Tonto.

APPENDIX D. Library model diagrams 85

Fi
gu

re
25

–
Li
br
ar
y
m
od

el
cr
ea
te
d
us
in
g
O
nt
oU

M
L

APPENDIX D. Library model diagrams 86

Fi
gu

re
26

–
Li
br
ar
y
m
od

el
di
ag
ra
m

im
po

rte
d
fro

m
a
JS
O
N
fil
e
ge
ne
ra
te
d
fro

m
To

nt
o

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of abbreviations and acronyms
	Contents
	Introduction
	Context and Motivation
	Objectives
	Approach
	Structure

	Theoretical Reference and Technologies Used
	Ontology-Based Conceptual Modeling and ontologies
	UFO
	OntoUML
	Sortals
	Non-Sortals
	Ontological Natures
	Beyond Endurant Types
	High order types as Endurants
	OntoUML as a Service

	Technologies Used
	Langium
	Visual Studio Code
	Visual Studio Code Extensions API
	Development and Execution Technologies

	Related Work

	Tonto: A textual syntax for modeling
	Requirements
	Tonto Grammar
	Class and Datatype Declarations
	Generalization Set
	Ontological Natures
	Relations

	Tonto Visual Studio Code Extension
	Tonto Validators
	Ultimate Sortal specialization validator
	Sortal specializes more than one ultimate sortal validator
	Sortal should specialize ultimate sortal validator
	Rigid specializes Anti-rigid validator
	Compatible Natures of sortals validator
	Compatible Natures validator
	Redundant Natures
	Other validators
	Tonto CLI

	Tonto Package Manager
	Manifest File

	How to use Tonto

	An Example of Tonto Model: Library
	Importing Model to Tonto
	Validating the Tonto Model
	Exporting the Model
	Analyzing Version Control

	Conclusion
	Final Considerations
	Lessons Learned
	Future Work

	Bibliography
	Appendix
	Tonto Grammar
	University model in Tonto
	Library model in Tonto
	Library model diagrams

